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Who am I? 

● Electronic Engineer from Universidad Nacional de La Universidad Nacional de La 
Plata, Buenos Aires, ArgentinaPlata, Buenos Aires, Argentina.

 
● PhD in Computer Science at INRIA / CNRS, Nice, INRIA / CNRS, Nice, 

France France (finishing in 2015).

 
● I am the main (and the only ;)) developer of TORO 



  

What is TORO OS?

● TORO OS started in 2003, and in 2004,  I 
released the first stable version.
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But in that moment,
TORO developing was 

only for fun
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How we can optimize a 
general purpose kernel 

for a given purpose?
i.e., application-oriented



  

What is TORO kernel?

● In 2006, the kernel is optimized to run a single 
user application in a multicore environment
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Kernel + user application

● Only ring 0
● The application is compiled with the kernel
● No syscalls, only calls.
● Threads instead of process
● Flat memory, no pagination 
● Light context switching

● In this sense, TORO is a library OS-like designing. 
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Memory space in TORO



  

Dedicated Resources

● In a multicore system the problematic 
resource is the shared memory.

● The use of shared memory causes:
– Overhead in the memory bus. 

– Overhead in the cache to keep it coherent.

– Overhead in spin locks for mutual exclusion.



  

Dedicated Resources

● In a multicore system the problematic 
resource is the shared memory.

● The use of shared memory causes:
– Overhead in the memory bus. 

– Overhead in the cache to keep it coherent.

– Overhead in spin locks for mutual exclusion.

TORO tries to avoid 
these problems by keeping 

all the resources locals, e.g., memory, filesystem



  

Dedicated Memory Allocation 

Memory space in Toro

TORO Memory allocator
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Dedicated Memory Allocation 

Memory space in Toro

Memory Region 1 Memory Region 2 Memory Region 3

TORO Memory allocator

Core1 Core2 Core3

This must be provided by a techno like
Intel QuickPath or Hypertransport.
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Dedicated Memory Allocation 

Memory Region 1 Memory Region 2 Memory Region 3

TORO Memory allocator

In TORO, 
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allocation
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Locality of memory
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Locality of resources

Memory 1 Memory 2 Memory 3

Core1 Core2 Core3

Thread 1 Thread2 Thread3

Disk1 Network cardDisk2

EXT3 Stack TCP/IPFAT32

By dedicating resources, TORO avoids the using of 
Spin locks since there is no acces from

others cores. 
 



  

Current state of project

Hardware (x86-64)

TORO kernel

Scheduler
cooperative 

multithreading

Memory
Flat 

(up to 512gb)

Device Driver

Virtual 
Filesystem

User application

ext3

IDE-Disk

ne2000
e1000

Network

Stack 
TCP-IP



  

Thoughts

● The difference between the kernel and 
application is becoming more thin.

● What is the rol of the kernel?
● When/Why we need a kernel?  
● When we dedicate a kernel, it becomes simpler.
● TORO represens a compromise between 

optimization and portability.



  

Questions?



  

Thanks!
torokernel.io

matiasevara@gmail.com

mailto:matiasevara@gmail.com
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