

A dedicated kernel named A dedicated kernel named TOROTORO
Matias Vara Larsen

Who am I?

● Electronic Engineer from Universidad Nacional de La Universidad Nacional de La
Plata, Buenos Aires, ArgentinaPlata, Buenos Aires, Argentina.

● PhD in Computer Science at INRIA / CNRS, Nice, INRIA / CNRS, Nice,

France France (finishing in 2015).

● I am the main (and the only ;)) developer of TORO

What is TORO OS?

● TORO OS started in 2003, and in 2004, I
released the first stable version.

Hardware (x86)

TORO OS kernel

Virtual Filesystem Scheduler
multitasking

Paging Memory Device Driver
floppy disk

FAT12

Filesystem
fat12

User applications
e.g., shell, ls, echo, etc

TORO – 1.1.3

TORO shell

LS

LS

But in that moment,
TORO developing was

only for fun

What is TORO OS?

● TORO OS starts in 2003, and in 2004, I
released the first stable version.

Hardware (x86)

TORO OS kernel

Virtual Filesystem Scheduler
multitasking

Paging Memory Device Driver
floppy disk

FAT12

Filesystem
fat12

User applications
e.g., shell, ls, echo, etc

TORO – 1.1.3

How we can optimize a
general purpose kernel

for a given purpose?
i.e., application-oriented

What is TORO kernel?

● In 2006, the kernel is optimized to run a single
user application in a multicore environment

What is TORO kernel?

● In 2006, the kernel is optimized to run a single
user application in a multicore environment

This defines
the architecture

of TORO

What is TORO kernel?

● In 2006, the kernel is optimized to run a single
user application in a multicore environment

This defines
the architecture

of TORO

TORO integrates the user application with the kernel,
and dedicates resources to a given core

e.g., memory, devices and so on

TORO integrates the user application with the kernel,
and dedicates resources to a given core

e.g., memory, devices and so on

Kernel + user application

● Only ring 0
● The application is compiled with the kernel
● No syscalls, only calls.
● Threads instead of process
● Flat memory, no pagination
● Light context switching

● In this sense, TORO is a library OS-like designing.

Kernel + user application

● Only ring 0
● The application is compiled with the kernel
● No syscalls, only calls.
● Threads instead of process
● Flat memory, no pagination
● Light context switching

● In this sense, TORO is a library OS-like designing.

Toro kernel + application Free Memory

Memory space in TORO

Dedicated Resources

● In a multicore system the problematic
resource is the shared memory.

● The use of shared memory causes:
– Overhead in the memory bus.

– Overhead in the cache to keep it coherent.

– Overhead in spin locks for mutual exclusion.

Dedicated Resources

● In a multicore system the problematic
resource is the shared memory.

● The use of shared memory causes:
– Overhead in the memory bus.

– Overhead in the cache to keep it coherent.

– Overhead in spin locks for mutual exclusion.

TORO tries to avoid
these problems by keeping

all the resources locals, e.g., memory, filesystem

Dedicated Memory Allocation

Memory space in Toro

TORO Memory allocator

Core1 Core2 Core3

Dedicated Memory Allocation

Memory space in Toro

Memory Region 1 Memory Region 2 Memory Region 3

TORO Memory allocator

Core1 Core2 Core3

This must be provided by a techno like
Intel QuickPath or Hypertransport.

Dedicated Memory Allocation

Memory Region 1 Memory Region 2 Memory Region 3

TORO Memory allocator

Core1 Core2 Core3

ge
tM

em
To

ro
()

Thread 1 Thread2 Thread3

Memory space in Toro

Dedicated Memory Allocation

Memory Region 1 Memory Region 2 Memory Region 3

TORO Memory allocator

In TORO,
the memory

allocation
is always local

ge
tM

em
To

ro
()

Core1 Core2 Core3

Thread 1 Thread2 Thread3

Memory space in Toro

Locality of memory

Memory 1 Memory 2 Memory 3

Core1 Core2 Core3

Thread 1 Thread2 Thread3

Locality of resources

Memory 1 Memory 2 Memory 3

Core1 Core2 Core3

Thread 1 Thread2 Thread3

Disk1 Network1Disk2

de
dic

at
es

Locality of resources

Memory 1 Memory 2 Memory 3

Core1 Core2 Core3

Thread 1 Thread2 Thread3

Disk1 Network1Disk2

DedicateBlockDriver(Disk1, Core1)

DedicateBlockDriver(Disk2, Core2)

de
dic

at
es

Locality of resources

Memory 1 Memory 2 Memory 3

Core1 Core2 Core3

Thread 1 Thread2 Thread3

Disk1

Network1

Disk2

DedicateNetwork(Core3, Network1)
de

dic
at

es

Locality of resources

Memory 1 Memory 2 Memory 3

Core1 Core2 Core3

Thread 1 Thread2 Thread3

Disk1 Network cardDisk2

Locality of resources

Memory 1 Memory 2 Memory 3

Core1 Core2 Core3

Thread 1 Thread2 Thread3

Disk1 Network cardDisk2

EXT3 Stack TCP/IPFAT32

Locality of resources

Memory 1 Memory 2 Memory 3

Core1 Core2 Core3

Thread 1 Thread2 Thread3

Disk1 Network cardDisk2

EXT3 Stack TCP/IPFAT32

By dedicating resources, TORO avoids the using of
Spin locks since there is no acces from

others cores.

Current state of project

Hardware (x86-64)

TORO kernel

Scheduler
cooperative

multithreading

Memory
Flat

(up to 512gb)

Device Driver

Virtual
Filesystem

User application

ext3

IDE-Disk

ne2000
e1000

Network

Stack
TCP-IP

Thoughts

● The difference between the kernel and
application is becoming more thin.

● What is the rol of the kernel?
● When/Why we need a kernel?
● When we dedicate a kernel, it becomes simpler.
● TORO represens a compromise between

optimization and portability.

Questions?

Thanks!
torokernel.io

matiasevara@gmail.com

mailto:matiasevara@gmail.com

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29

