
The computer science behind amodern distributed data store

Michael Hackstein

Fosdem, Brussels, 03 February 2018

www.arangodb.com

www.arangodb.com


Overview

Topics
Resilience and Consensus
Sorting
Log-structured Merge Trees
Hybrid Logical Clocks
Distributed ACID Transactions

Bottom line: You need CompSci to implement a modern data store



Overview

Topics
Resilience and Consensus
Sorting
Log-structured Merge Trees
Hybrid Logical Clocks
Distributed ACID Transactions
Bottom line: You need CompSci to implement a modern data store



Resilience and Consensus
The Problem
A modern data store is distributed,

because it needs to scale out and/orbe resilient.
Different parts of the system need to agree on things.

Consensus is the art to achieve this as well as possible in software.
This is relatively easy, if things are good, but very hard, if:

the network has outages,
the network has dropped or delayed or duplicated packets,
disks fail (and come back with corrupt data),
machines fail (and come back with old data),
racks fail (and come back with or without data).
(And we have not even talked about malicious attacks and enemy action.)



Resilience and Consensus
The Problem
A modern data store is distributed, because it needs to scale out and/orbe resilient.

Different parts of the system need to agree on things.
Consensus is the art to achieve this as well as possible in software.

This is relatively easy, if things are good, but very hard, if:
the network has outages,
the network has dropped or delayed or duplicated packets,
disks fail (and come back with corrupt data),
machines fail (and come back with old data),
racks fail (and come back with or without data).
(And we have not even talked about malicious attacks and enemy action.)



Resilience and Consensus
The Problem
A modern data store is distributed, because it needs to scale out and/orbe resilient.

Different parts of the system need to agree on things.

Consensus is the art to achieve this as well as possible in software.
This is relatively easy, if things are good, but very hard, if:

the network has outages,
the network has dropped or delayed or duplicated packets,
disks fail (and come back with corrupt data),
machines fail (and come back with old data),
racks fail (and come back with or without data).
(And we have not even talked about malicious attacks and enemy action.)



Resilience and Consensus
The Problem
A modern data store is distributed, because it needs to scale out and/orbe resilient.

Different parts of the system need to agree on things.
Consensus is the art to achieve this as well as possible in software.

This is relatively easy, if things are good, but very hard, if:

the network has outages,
the network has dropped or delayed or duplicated packets,
disks fail (and come back with corrupt data),
machines fail (and come back with old data),
racks fail (and come back with or without data).
(And we have not even talked about malicious attacks and enemy action.)



Resilience and Consensus
The Problem
A modern data store is distributed, because it needs to scale out and/orbe resilient.

Different parts of the system need to agree on things.
Consensus is the art to achieve this as well as possible in software.

This is relatively easy, if things are good, but very hard, if:
the network has outages,
the network has dropped or delayed or duplicated packets,
disks fail (and come back with corrupt data),
machines fail (and come back with old data),
racks fail (and come back with or without data).

(And we have not even talked about malicious attacks and enemy action.)



Resilience and Consensus
The Problem
A modern data store is distributed, because it needs to scale out and/orbe resilient.

Different parts of the system need to agree on things.
Consensus is the art to achieve this as well as possible in software.

This is relatively easy, if things are good, but very hard, if:
the network has outages,
the network has dropped or delayed or duplicated packets,
disks fail (and come back with corrupt data),
machines fail (and come back with old data),
racks fail (and come back with or without data).
(And we have not even talked about malicious attacks and enemy action.)



Paxos and Raft
Traditionally, one uses the Paxos Consensus Protocol (1998).More recently, Raft (2013) has been proposed.

Paxos is a challenge to understand and to implement efficiently.
Various variants exist.
Raft is designed to be understandable.

My advice:
First try to understand Paxos for some time (do not implement it!), thenenjoy the beauty of Raft, but do not implement it either!Use some battle-tested implementation you trust!

But most importantly: DO NOT TRY TO INVENT YOUR OWN!

http://the-paper-trail.org/blog/consensus-protocols-paxos/
https://raft.github.io/


Paxos and Raft
Traditionally, one uses the Paxos Consensus Protocol (1998).More recently, Raft (2013) has been proposed.

Paxos is a challenge to understand and to implement efficiently.
Various variants exist.
Raft is designed to be understandable.
My advice:
First try to understand Paxos for some time (do not implement it!), thenenjoy the beauty of Raft,

but do not implement it either!Use some battle-tested implementation you trust!
But most importantly: DO NOT TRY TO INVENT YOUR OWN!

http://the-paper-trail.org/blog/consensus-protocols-paxos/
https://raft.github.io/


Paxos and Raft
Traditionally, one uses the Paxos Consensus Protocol (1998).More recently, Raft (2013) has been proposed.

Paxos is a challenge to understand and to implement efficiently.
Various variants exist.
Raft is designed to be understandable.
My advice:
First try to understand Paxos for some time (do not implement it!), thenenjoy the beauty of Raft, but do not implement it either!

Use some battle-tested implementation you trust!
But most importantly: DO NOT TRY TO INVENT YOUR OWN!

http://the-paper-trail.org/blog/consensus-protocols-paxos/
https://raft.github.io/


Paxos and Raft
Traditionally, one uses the Paxos Consensus Protocol (1998).More recently, Raft (2013) has been proposed.

Paxos is a challenge to understand and to implement efficiently.
Various variants exist.
Raft is designed to be understandable.
My advice:
First try to understand Paxos for some time (do not implement it!), thenenjoy the beauty of Raft, but do not implement it either!Use some battle-tested implementation you trust!

But most importantly: DO NOT TRY TO INVENT YOUR OWN!

http://the-paper-trail.org/blog/consensus-protocols-paxos/
https://raft.github.io/


Paxos and Raft
Traditionally, one uses the Paxos Consensus Protocol (1998).More recently, Raft (2013) has been proposed.

Paxos is a challenge to understand and to implement efficiently.
Various variants exist.
Raft is designed to be understandable.
My advice:
First try to understand Paxos for some time (do not implement it!), thenenjoy the beauty of Raft, but do not implement it either!Use some battle-tested implementation you trust!

But most importantly: DO NOT TRY TO INVENT YOUR OWN!

http://the-paper-trail.org/blog/consensus-protocols-paxos/
https://raft.github.io/


Raft in a slide
An odd number of servers each keep a persisted log of events.

Everything is replicated to everybody.
They democratically elect a leader with absolute majority.
Only the leader may append to the replicated log.
An append only counts when a majority has persisted and confirmed it.
Very smart logic to ensure a unique leader and automatic recovery from failure.
It is all a lot of fun to get right, but it is proven to work.
One puts a key/value store on top, the log contains the changes.



Raft in a slide
An odd number of servers each keep a persisted log of events.
Everything is replicated to everybody.

They democratically elect a leader with absolute majority.
Only the leader may append to the replicated log.
An append only counts when a majority has persisted and confirmed it.
Very smart logic to ensure a unique leader and automatic recovery from failure.
It is all a lot of fun to get right, but it is proven to work.
One puts a key/value store on top, the log contains the changes.



Raft in a slide
An odd number of servers each keep a persisted log of events.
Everything is replicated to everybody.
They democratically elect a leader with absolute majority.

Only the leader may append to the replicated log.
An append only counts when a majority has persisted and confirmed it.
Very smart logic to ensure a unique leader and automatic recovery from failure.
It is all a lot of fun to get right, but it is proven to work.
One puts a key/value store on top, the log contains the changes.



Raft in a slide
An odd number of servers each keep a persisted log of events.
Everything is replicated to everybody.
They democratically elect a leader with absolute majority.
Only the leader may append to the replicated log.

An append only counts when a majority has persisted and confirmed it.
Very smart logic to ensure a unique leader and automatic recovery from failure.
It is all a lot of fun to get right, but it is proven to work.
One puts a key/value store on top, the log contains the changes.



Raft in a slide
An odd number of servers each keep a persisted log of events.
Everything is replicated to everybody.
They democratically elect a leader with absolute majority.
Only the leader may append to the replicated log.
An append only counts when a majority has persisted and confirmed it.

Very smart logic to ensure a unique leader and automatic recovery from failure.
It is all a lot of fun to get right, but it is proven to work.
One puts a key/value store on top, the log contains the changes.



Raft in a slide
An odd number of servers each keep a persisted log of events.
Everything is replicated to everybody.
They democratically elect a leader with absolute majority.
Only the leader may append to the replicated log.
An append only counts when a majority has persisted and confirmed it.
Very smart logic to ensure a unique leader and automatic recovery from failure.

It is all a lot of fun to get right, but it is proven to work.
One puts a key/value store on top, the log contains the changes.



Raft in a slide
An odd number of servers each keep a persisted log of events.
Everything is replicated to everybody.
They democratically elect a leader with absolute majority.
Only the leader may append to the replicated log.
An append only counts when a majority has persisted and confirmed it.
Very smart logic to ensure a unique leader and automatic recovery from failure.
It is all a lot of fun to get right, but it is proven to work.

One puts a key/value store on top, the log contains the changes.



Raft in a slide
An odd number of servers each keep a persisted log of events.
Everything is replicated to everybody.
They democratically elect a leader with absolute majority.
Only the leader may append to the replicated log.
An append only counts when a majority has persisted and confirmed it.
Very smart logic to ensure a unique leader and automatic recovery from failure.
It is all a lot of fun to get right, but it is proven to work.
One puts a key/value store on top, the log contains the changes.



Raft demo

file:///Users/mchacki/talks/talks/compScience/raft/raft.github.io/
raftscope/index.html

http://raft.github.io/raftscope/index.html

(by Diego Ongaro)

file:///Users/mchacki/talks/talks/compScience/raft/raft.github.io/raftscope/index.html
file:///Users/mchacki/talks/talks/compScience/raft/raft.github.io/raftscope/index.html
http://raft.github.io/raftscope/index.html


Sorting
The Problem
Data stores need indexes. In practice, we need to sort things.

Most published algorithms are rubbish onmodern hardware.
The problem is no longer the

comparison computations but the data movement.
Since the time where an Apple IIe was blazing fast hardware,

compute power in one core has increased by ×20000
a single memory access by ×40
and now we have 32 cores in a CPU
this means computation has outpacedmemory access by ×1280!



Sorting
The Problem
Data stores need indexes. In practice, we need to sort things.
Most published algorithms are rubbish onmodern hardware.

The problem is no longer the
comparison computations but the data movement.

Since the time where an Apple IIe was blazing fast hardware,
compute power in one core has increased by ×20000
a single memory access by ×40
and now we have 32 cores in a CPU
this means computation has outpacedmemory access by ×1280!



Sorting
The Problem
Data stores need indexes. In practice, we need to sort things.
Most published algorithms are rubbish onmodern hardware.
The problem is no longer the

comparison computations but the data movement.

Since the time where an Apple IIe was blazing fast hardware,
compute power in one core has increased by ×20000
a single memory access by ×40
and now we have 32 cores in a CPU
this means computation has outpacedmemory access by ×1280!



Sorting
The Problem
Data stores need indexes. In practice, we need to sort things.
Most published algorithms are rubbish onmodern hardware.
The problem is no longer the

comparison computations but the data movement.
Since the time where an Apple IIe was blazing fast hardware,

compute power in one core has increased by ×20000
a single memory access by ×40
and now we have 32 cores in a CPU
this means computation has outpacedmemory access by ×1280!



Idea for a parallel sorting algorithm: Merge Sort

Min−Heap:

sorted

merged

Nearly all comparisons hit the L2 cache!



Idea for a parallel sorting algorithm: Merge Sort

Min−Heap:

sorted

merged

Nearly all comparisons hit the L2 cache!



Log structured merge trees (LSM-trees)

The Problem
People rightfully expect from a data store, that it

can hold more data than the available RAM,
works well with SSDs and spinning rust,
allows fast bulk inserts into large data sets, and
provides fast reads in a hot set that fits into RAM.

Traditional B-tree based structures often fail to deliver with the last 2.



Log structured merge trees (LSM-trees)

The Problem
People rightfully expect from a data store, that it

can hold more data than the available RAM,
works well with SSDs and spinning rust,
allows fast bulk inserts into large data sets, and
provides fast reads in a hot set that fits into RAM.

Traditional B-tree based structures often fail to deliver with the last 2.



Log structured merge trees (LSM-trees)

(Source: http://www.benstopford.com/2015/02/14/log-structured-merge-trees/, Author: Ben Stopford, License: Creative Commons)

http://www.benstopford.com/2015/02/14/log-structured-merge-trees/
http://www.benstopford.com
https://creativecommons.org/licenses/by-sa/4.0/deed.en


Log structured merge trees (LSM-trees)
LSM-trees — summary

writes first go into memtables,
all files are sorted and immutable,
compaction happens in the background,
merge sort can be used,
all writes use sequential I/O,
Bloom filters or Cuckoo filters for fast reads,
=⇒ good write throughput and reasonable read performance,
used in ArangoDB, BigTable, Cassandra, HBase, InfluxDB, LevelDB,MongoDB, RocksDB, SQLite4 and WiredTiger, etc.

https://arangodb.com
https://cloud.google.com/bigtable/
http://cassandra.apache.org/
https://hbase.apache.org/
https://www.influxdata.com/
http://leveldb.org/
https://www.mongodb.com
http://rocksdb.org/
https://sqlite.org/src4/doc/trunk/www/index.wiki
http://www.wiredtiger.com/


Hybrid Logical Clocks (HLC)
The Problem
Clocks in different nodes of distributed systems are not in sync.

general relativity poses fundamental obstructions to synchronizity,
in practice, clock skew happens,
Google can use atomic clocks,
even with NTP (network time protocol) we have to live with ≈ 20ms.

Therefore, we cannot compare time stamps from different nodes!
Why would this help?

establish “happened after” relationship between events,
e.g. for conflict resolution, log sorting, detecting network delays,
time to live could be implemented easily.



Hybrid Logical Clocks (HLC)
The Problem
Clocks in different nodes of distributed systems are not in sync.

general relativity poses fundamental obstructions to synchronizity,
in practice, clock skew happens,
Google can use atomic clocks,
even with NTP (network time protocol) we have to live with ≈ 20ms.

Therefore, we cannot compare time stamps from different nodes!
Why would this help?

establish “happened after” relationship between events,
e.g. for conflict resolution, log sorting, detecting network delays,
time to live could be implemented easily.



Hybrid Logical Clocks (HLC)
The Problem
Clocks in different nodes of distributed systems are not in sync.

general relativity poses fundamental obstructions to synchronizity,
in practice, clock skew happens,
Google can use atomic clocks,
even with NTP (network time protocol) we have to live with ≈ 20ms.

Therefore, we cannot compare time stamps from different nodes!

Why would this help?
establish “happened after” relationship between events,
e.g. for conflict resolution, log sorting, detecting network delays,
time to live could be implemented easily.



Hybrid Logical Clocks (HLC)
The Problem
Clocks in different nodes of distributed systems are not in sync.

general relativity poses fundamental obstructions to synchronizity,
in practice, clock skew happens,
Google can use atomic clocks,
even with NTP (network time protocol) we have to live with ≈ 20ms.

Therefore, we cannot compare time stamps from different nodes!
Why would this help?

establish “happened after” relationship between events,
e.g. for conflict resolution, log sorting, detecting network delays,
time to live could be implemented easily.



Hybrid Logical Clocks (HLC)
The Idea
Every computer has a local clock, and we use NTP to synchronize.

If two events on different machines are linked by causality, the causeshould have a smaller time stamp than the effect.
causality⇐⇒ a message is sent

Send a time stamp with every message. The HLC always returns a value
>max(local clock, largest time stamp ever seen).

Causality is preserved, time can “catch up” with logical time eventually.
http://muratbuffalo.blogspot.com.es/2014/07/hybrid-logical-clocks.html

http://muratbuffalo.blogspot.com.es/2014/07/hybrid-logical-clocks.html


Hybrid Logical Clocks (HLC)
The Idea
Every computer has a local clock, and we use NTP to synchronize.If two events on different machines are linked by causality, the causeshould have a smaller time stamp than the effect.

causality⇐⇒ a message is sent
Send a time stamp with every message. The HLC always returns a value

>max(local clock, largest time stamp ever seen).
Causality is preserved, time can “catch up” with logical time eventually.

http://muratbuffalo.blogspot.com.es/2014/07/hybrid-logical-clocks.html

http://muratbuffalo.blogspot.com.es/2014/07/hybrid-logical-clocks.html


Hybrid Logical Clocks (HLC)
The Idea
Every computer has a local clock, and we use NTP to synchronize.If two events on different machines are linked by causality, the causeshould have a smaller time stamp than the effect.

causality⇐⇒ a message is sent
Send a time stamp with every message. The HLC always returns a value

>max(local clock, largest time stamp ever seen).

Causality is preserved, time can “catch up” with logical time eventually.
http://muratbuffalo.blogspot.com.es/2014/07/hybrid-logical-clocks.html

http://muratbuffalo.blogspot.com.es/2014/07/hybrid-logical-clocks.html


Hybrid Logical Clocks (HLC)
The Idea
Every computer has a local clock, and we use NTP to synchronize.If two events on different machines are linked by causality, the causeshould have a smaller time stamp than the effect.

causality⇐⇒ a message is sent
Send a time stamp with every message. The HLC always returns a value

>max(local clock, largest time stamp ever seen).
Causality is preserved, time can “catch up” with logical time eventually.

http://muratbuffalo.blogspot.com.es/2014/07/hybrid-logical-clocks.html

http://muratbuffalo.blogspot.com.es/2014/07/hybrid-logical-clocks.html


Distributed ACID Transactions
Atomic either happens in its entirety or not at all

Consistent reading sees a consistent state, writing preser-vers consistency

Isolated concurrent transactions do not see each other

Durable committed writes are preserved after shut-down and crashes

(All relatively doable when transactions happen one after another!)



Distributed ACID Transactions
Atomic either happens in its entirety or not at all

Consistent reading sees a consistent state, writing preser-vers consistency

Isolated concurrent transactions do not see each other

Durable committed writes are preserved after shut-down and crashes
(All relatively doable when transactions happen one after another!)



Distributed ACID Transactions

The Problem
In a distributed system:

How to make sure, that all nodes agree on whetherthe transaction has happened? (Atomicity)

How to create a consistent snapshot across nodes? (Consistency)
How to hide ongoing activities until commit? (Isolation)
How to handle lost nodes? (Durability)

We have to take replication, resilience and failover into account.



Distributed ACID Transactions

The Problem
In a distributed system:

How to make sure, that all nodes agree on whetherthe transaction has happened? (Atomicity)
How to create a consistent snapshot across nodes? (Consistency)

How to hide ongoing activities until commit? (Isolation)
How to handle lost nodes? (Durability)

We have to take replication, resilience and failover into account.



Distributed ACID Transactions

The Problem
In a distributed system:

How to make sure, that all nodes agree on whetherthe transaction has happened? (Atomicity)
How to create a consistent snapshot across nodes? (Consistency)
How to hide ongoing activities until commit? (Isolation)

How to handle lost nodes? (Durability)
We have to take replication, resilience and failover into account.



Distributed ACID Transactions

The Problem
In a distributed system:

How to make sure, that all nodes agree on whetherthe transaction has happened? (Atomicity)
How to create a consistent snapshot across nodes? (Consistency)
How to hide ongoing activities until commit? (Isolation)
How to handle lost nodes? (Durability)

We have to take replication, resilience and failover into account.



Distributed ACID Transactions

The Problem
In a distributed system:

How to make sure, that all nodes agree on whetherthe transaction has happened? (Atomicity)
How to create a consistent snapshot across nodes? (Consistency)
How to hide ongoing activities until commit? (Isolation)
How to handle lost nodes? (Durability)

We have to take replication, resilience and failover into account.



Distributed ACID Transactions
WITHOUT
Distributed databases without ACID transactions:ArangoDB, BigTable, Couchbase, Datastax, Dynamo, Elastic, HBase,MongoDB, RethinkDB, Riak, and lots more . . .

WITH
Distributed databases with ACID transactions:(ArangoDB,) CockroachDB, FoundationDB, Spanner

=⇒ Very few distributed engines promise ACID, because this is hard!



Distributed ACID Transactions
WITHOUT
Distributed databases without ACID transactions:ArangoDB, BigTable, Couchbase, Datastax, Dynamo, Elastic, HBase,MongoDB, RethinkDB, Riak, and lots more . . .

WITH
Distributed databases with ACID transactions:(ArangoDB,) CockroachDB, FoundationDB, Spanner

=⇒ Very few distributed engines promise ACID, because this is hard!



Distributed ACID Transactions
Basic Idea
UseMulti Version Concurrency Control (MVCC), i.e. multiple revisions ofa data item are kept.

Do writes and replication decentrally and distributed, without thembecoming visible from other transactions.Then have some place, where there is a switch, which decides when thetransaction becomes visible. These “switches” need to
be persisted somewhere (durability),
scale out (no bottleneck for commit/abort),
be replicated (no single point of failure),
be resilient in case of fail-over (fault-tolerance).

Transaction visibility needs to be implemented (MVCC), time stamps playa crucial role.



Distributed ACID Transactions
Basic Idea
UseMulti Version Concurrency Control (MVCC), i.e. multiple revisions ofa data item are kept.Do writes and replication decentrally and distributed, without thembecoming visible from other transactions.

Then have some place, where there is a switch, which decides when thetransaction becomes visible. These “switches” need to
be persisted somewhere (durability),
scale out (no bottleneck for commit/abort),
be replicated (no single point of failure),
be resilient in case of fail-over (fault-tolerance).

Transaction visibility needs to be implemented (MVCC), time stamps playa crucial role.



Distributed ACID Transactions
Basic Idea
UseMulti Version Concurrency Control (MVCC), i.e. multiple revisions ofa data item are kept.Do writes and replication decentrally and distributed, without thembecoming visible from other transactions.Then have some place, where there is a switch, which decides when thetransaction becomes visible.

These “switches” need to
be persisted somewhere (durability),
scale out (no bottleneck for commit/abort),
be replicated (no single point of failure),
be resilient in case of fail-over (fault-tolerance).

Transaction visibility needs to be implemented (MVCC), time stamps playa crucial role.



Distributed ACID Transactions
Basic Idea
UseMulti Version Concurrency Control (MVCC), i.e. multiple revisions ofa data item are kept.Do writes and replication decentrally and distributed, without thembecoming visible from other transactions.Then have some place, where there is a switch, which decides when thetransaction becomes visible. These “switches” need to

be persisted somewhere (durability),
scale out (no bottleneck for commit/abort),
be replicated (no single point of failure),
be resilient in case of fail-over (fault-tolerance).

Transaction visibility needs to be implemented (MVCC), time stamps playa crucial role.



Distributed ACID Transactions
Basic Idea
UseMulti Version Concurrency Control (MVCC), i.e. multiple revisions ofa data item are kept.Do writes and replication decentrally and distributed, without thembecoming visible from other transactions.Then have some place, where there is a switch, which decides when thetransaction becomes visible. These “switches” need to

be persisted somewhere (durability),
scale out (no bottleneck for commit/abort),
be replicated (no single point of failure),
be resilient in case of fail-over (fault-tolerance).

Transaction visibility needs to be implemented (MVCC), time stamps playa crucial role.



Links
http://the-paper-trail.org/blog/consensus-protocols-paxos

https://raft.github.io

https://en.wikipedia.org/wiki/Merge_sort

http://www.benstopford.com/2015/02/14/log-structured-merge-trees/

http://muratbuffalo.blogspot.com.es/2014/07/hybrid-logical-clocks.html

https://research.google.com/archive/spanner.html

https://www.cockroachlabs.com/docs/v1.1/architecture/overview.html

https://www.arangodb.com

http://mesos.apache.org

http://the-paper-trail.org/blog/consensus-protocols-paxos
https://raft.github.io
https://en.wikipedia.org/wiki/Merge_sort
http://www.benstopford.com/2015/02/14/log-structured-merge-trees/
http://muratbuffalo.blogspot.com.es/2014/07/hybrid-logical-clocks.html
https://research.google.com/archive/spanner.html
https://www.cockroachlabs.com/docs/v1.1/architecture/overview.html
https://www.arangodb.com
http://mesos.apache.org

