
Automated Analysis of TLS 1.3
(How to Train Your Monkey)

Thyla van der Merwe
2 February 2019

What is TLS?

SSL 2.0 (1995) → SSL 3.0 (1996)

 TLS 1.0 (1999) → TLS 1.1 (2006) → TLS 1.2 (2008)

SSL 2.0 (1995) → SSL 3.0 (1996)

 TLS 1.0 (1999) → TLS 1.1 (2006) → TLS 1.2 (2008)
(2018)

Why Something New?

TLS 1.2
(and below)

 TLS 1.3

Why Something New?

TLS 1.2
(and below)

 TLS 1.3

Why Something New?

weaknesses

TLS 1.2
(and below)

 TLS 1.3

Why Something New?

weaknesses

TLS 1.2
(and below)

 TLS 1.3

Why Something New?

 improve efficiency

weaknesses

TLS 1.2
(and below)

 TLS 1.3

What’s Changed?

TLS 1.2
(and below)

 TLS 1.3 vs

- 2-RTT
- static RSA/DH
- HS not encrypted
- ‘bad’ record protection
mechanisms

- reactive development
process

Technical

Process

- 1-RTT/0-RTT
- ephemeral DH
- HS encrypted
- updated record protection
mechanisms

- proactive development
process

TLS
WG

Charter

Analysis Avenues for TLS 1.3

The Tamarin Prover

http://www.infsec.ethz.ch/research/software/tamarin.html

● What is it?
○ Automated tool for protocol analysis

● How does it work?
○ For simple models/properties, prove automatically
○ Complex models require more interaction
○ A proof shows that a property holds in all possible combinations of

honest actors and adversary behaviours!

Constraint solver

Constraint solver

Theorem Prover

Tamarin prover

Dedicated
constraint

solver
System S constraints

from S

Property P constraint
from (not P)

Tamarin prover

Dedicated
constraint

solver

Solution exists:
ATTACK

System S constraints
from S

Property P constraint
from (not P)

Tamarin prover

Dedicated
constraint

solver

Solution exists:
ATTACK

No solution exists:
PROOFSystem S constraints

from S

Property P constraint
from (not P)

Tamarin prover

Dedicated
constraint

solver

Solution exists:
ATTACK

No solution exists:
PROOFSystem S constraints

from S

Property P constraint
from (not P)

Run out of
time or

memory

Tamarin prover

Dedicated
constraint

solver

Solution exists:
ATTACK

No solution exists:
PROOFSystem S constraints

from S

Property P constraint
from (not P)

Run out of
time or

memory

Interactive mode
Inspect partial proof

Tamarin prover

Dedicated
constraint

solver

Solution exists:
ATTACK

No solution exists:
PROOFSystem S constraints

from S

Property P constraint
from (not P)

Run out of
time or

memory

Provide hints for
the prover
(e.g. invariants)

Interactive mode
Inspect partial proof

Specifying Protocols

Rewrite rules that specify transition system

rule name: LHS --[actions]-> RHS

rule name: LHS --[actions]-> RHS

rule my_protocol_step2:

 [In(m1), State(ThreadID, `state1`, previousData)]

 --[Accepted(ThreadID, k)]->

 [Out(m2), State(ThreadID, `state2`, newData)]

premises (LHS)

rule name: LHS --[actions]-> RHS

rule my_protocol_step2:

 [In(m1), State(ThreadID, `state1`, previousData)]

 --[Accepted(ThreadID, k)]->

 [Out(m2), State(ThreadID, `state2`, newData)]

premises (LHS)

conclusions (RHS)

rule name: LHS --[actions]-> RHS

rule my_protocol_step2:

 [In(m1), State(ThreadID, `state1`, previousData)]

 --[Accepted(ThreadID, k)]->

 [Out(m2), State(ThreadID, `state2`, newData)]

premises (LHS)

actions

conclusions (RHS)

rules --> state machine

Example: client state machine

Rules correspond to edges

Analysing TLS 1.3
● We built a model of the TLS 1.3 specification, drafts 10 and 21
● We wanted to verify the main security properties of the TLS 1.3

○ secrecy of session keys
○ unilateral and mutual authentication

● We found an attack against draft 10+ → provided feedback to the IETF
and we helped to fix the specification

● Our modeling of draft 21 shows that the logical core of TLS 1.3 looks
sound!

Joint work with Cas Cremers, Marko Horvat, Jonathan Hoyland and Sam Scott.

protocol
spec properties

Are the keys
secret?

model encode
properties proofs?

secrecy
Establish session
keys

protocol
spec properties

Are the keys
secret?

model encode
properties proofs?

secrecy
Establish session
keys

STEP 1

STEP 2
STEP 3

Step 1: Building the Model 10

● Encode honest party and adversary actions as Tamarin rules
● Honest client and server rules correspond to flights of messages
● Rules transition protocol from one state to the next

10

● Encode honest party and adversary actions as Tamarin rules
● Honest client and server rules correspond to flights of messages
● Rules transition protocol from one state to the next

10

C S
ClientHello, ClientKeyShare

ServerHello, ServerKeyExchange, {EncryptedExtensions},
{ServerConfiguration}, {Certificate} ,{CertificateRequest*}

{CertificateVerfiy}, {Finished}

[Application Data]

{Certificate*}, {CertificateVerify*}, {Finished}

HelloRetryRequest

ClientHello, ClientKeyShare

Initial (EC)DHE

● Encode honest party and adversary actions as Tamarin rules
● Honest client and server rules correspond to flights of messages
● Rules transition protocol from one state to the next

10

C S
ClientHello, ClientKeyShare

ServerHello, ServerKeyExchange, {EncryptedExtensions},
{ServerConfiguration}, {Certificate} ,{CertificateRequest*}

{CertificateVerfiy}, {Finished}

[Application Data]

{Certificate*}, {CertificateVerify*}, {Finished}

HelloRetryRequest

ClientHello, ClientKeyShare

Initial (EC)DHE

C S
ClientHello, ClientKeyShare, EarlyDataIndication,

(EncryptedExtensions), (Cerificate*),
(CertificateVerify*), (ApplicationData)

ServerHello, ServerKeyExchange, {EncryptedExtensions},
{ServerConfiguration*}, {Certificate} ,{CertificateRequest*}

{CertificateVerfiy}, {Finished}

[Application Data]

 {Finished}

0-RTT

● Encode honest party and adversary actions as Tamarin rules
● Honest client and server rules correspond to flights of messages
● Rules transition protocol from one state to the next

10

C S
ClientHello, ClientKeyShare

ServerHello, ServerKeyExchange, {EncryptedExtensions},
{ServerConfiguration}, {Certificate} ,{CertificateRequest*}

{CertificateVerfiy}, {Finished}

[Application Data]

{Certificate*}, {CertificateVerify*}, {Finished}

HelloRetryRequest

ClientHello, ClientKeyShare

Initial (EC)DHE

C S
ClientHello, ClientKeyShare, EarlyDataIndication,

(EncryptedExtensions), (Cerificate*),
(CertificateVerify*), (ApplicationData)

ServerHello, ServerKeyExchange, {EncryptedExtensions},
{ServerConfiguration*}, {Certificate} ,{CertificateRequest*}

{CertificateVerfiy}, {Finished}

[Application Data]

 {Finished}

0-RTT

C S

ClientHello, ClientKeyShare, PreSharedKeyExtension

ServerHello, PreSharedKeyExtension,
{EncryptedExtensions}, {Finished}

[Application Data]

 {Finished}

PSK-resumption

 [NewSessionTicket] (previous handshake)

● Encode honest party and adversary actions as Tamarin rules
● Honest client and server rules correspond to flights of messages
● Rules transition protocol from one state to the next

10

C S
ClientHello, ClientKeyShare

ServerHello, ServerKeyExchange, {EncryptedExtensions},
{ServerConfiguration}, {Certificate} ,{CertificateRequest*}

{CertificateVerfiy}, {Finished}

[Application Data]

{Certificate*}, {CertificateVerify*}, {Finished}

HelloRetryRequest

ClientHello, ClientKeyShare

Initial (EC)DHE

C S
ClientHello, ClientKeyShare, EarlyDataIndication,

(EncryptedExtensions), (Cerificate*),
(CertificateVerify*), (ApplicationData)

ServerHello, ServerKeyExchange, {EncryptedExtensions},
{ServerConfiguration*}, {Certificate} ,{CertificateRequest*}

{CertificateVerfiy}, {Finished}

[Application Data]

 {Finished}

0-RTT

C S

ClientHello, ClientKeyShare, PreSharedKeyExtension

ServerHello, PreSharedKeyExtension,
{EncryptedExtensions}, {Finished}

[Application Data]

 {Finished}

PSK-resumption

 [NewSessionTicket] (previous handshake)

C S

ClientHello, ClientKeyShare, PreSharedKeyExtension

ServerHello, ServerKeyShare, PreSharedKeyExtension,
{EncryptedExtensions}, {Finished}

[Application Data]

 {Finished}

PSK-DHE

 [NewSessionTicket] (previous handshake)

● Encode honest party and adversary actions as Tamarin rules
● Honest client and server rules correspond to flights of messages
● Rules transition protocol from one state to the next

10

C S
ClientHello, ClientKeyShare

ServerHello, ServerKeyExchange, {EncryptedExtensions},
{ServerConfiguration}, {Certificate} ,{CertificateRequest*}

{CertificateVerfiy}, {Finished}

[Application Data]

{Certificate*}, {CertificateVerify*}, {Finished}

HelloRetryRequest

ClientHello, ClientKeyShare

Initial (EC)DHE

C S
ClientHello, ClientKeyShare, EarlyDataIndication,

(EncryptedExtensions), (Cerificate*),
(CertificateVerify*), (ApplicationData)

ServerHello, ServerKeyExchange, {EncryptedExtensions},
{ServerConfiguration*}, {Certificate} ,{CertificateRequest*}

{CertificateVerfiy}, {Finished}

[Application Data]

 {Finished}

0-RTT

C S

ClientHello, ClientKeyShare, PreSharedKeyExtension

ServerHello, PreSharedKeyExtension,
{EncryptedExtensions}, {Finished}

[Application Data]

 {Finished}

PSK-resumption

 [NewSessionTicket] (previous handshake)

C S

ClientHello, ClientKeyShare, PreSharedKeyExtension

ServerHello, ServerKeyShare, PreSharedKeyExtension,
{EncryptedExtensions}, {Finished}

[Application Data]

 {Finished}

PSK-DHE

 [NewSessionTicket] (previous handshake)

Record

10

Very SIMPLE
rule!

10

10

10

10

10

10

10

10

Adversarial Capabilities
● In addition to what Tamarin includes, we need to capture additional

adversarial capabilities - for meaningful security notions

10

Step 2: Encoding Properties 10

Security Property Source

Unilateral authentication (server) D.1.1

Mutual authentication D.1.1

Confidentiality of ephemeral secret D.1.1

Confidentiality of static secret D.1.1

Perfect forward secrecy D.1.1.1

Integrity of handshake messages D.1.3

Confidentiality
of session keys

10

secret_session_keys:
(1) All actor peer role k #i.
(2) SessionKey(actor, peer, role, <k, authenticated>)@i
(3) & not ((Ex #r. RevLtk(peer)@r & #r < #i)

 | (Ex #r. RevLtk(actor@r & #r < #i))
(4) ==> not Ex #j. K(k)@j

10

secret_session_keys:
(1) All actor peer role k #i.
(2) SessionKey(actor, peer, role, <k, authenticated>)@i
(3) & not ((Ex #r. RevLtk(peer)@r & #r < #i)

 | (Ex #r. RevLtk(actor@r & #r < #i))
(4) ==> not Ex #j. K(k)@j

This says…
● for all possible variables on the first line (1),
● if the key k is accepted at time point i (2), and
● the adversary has not revealed the long-term keys of the actor or the peer

before the key is accepted (3),
● then the adversary cannot derive the key (4).

10

secret_session_keys:
(1) All actor peer role k #i.
(2) SessionKey(actor, peer, role, <k, authenticated>)@i
(3) & not ((Ex #r. RevLtk(peer)@r & #r < #i)

 | (Ex #r. RevLtk(actor@r & #r < #i))
(4) ==> not Ex #j. K(k)@j

Aim to show that this holds in possible combinations of client, server and
adversary behaviours!

Constructed Tamarin encodings for all of the main properties:

10

Security Property

Unilateral authentication (server)

Mutual authentication

Confidentiality of ephemeral secret

Confidentiality of static secret

Perfect forward secrecy

Integrity of handshake messages

entity_authentication
mutual_entity_authentication

secret_early_data_keys
secret_session_keys(with
PFS)

transcript_agreement
mutual_transcript_agreement

Can adversary attack the property?

?

Step 3: Producing Proofs
● Let’s simplify our secret_session_keys encoding:

session_key_established ∧ ¬ adversary_performs_reveals
⇒ ¬ adversary_knows_key

10

Step 3: Producing Proofs
● Let’s simplify our secret_session_keys encoding:

session_key_established ∧ ¬ adversary_performs_reveals
⇒ ¬ adversary_knows_key

session_key_established ∧ ¬ adversary_performs_reveals
∧ adversary_knows_key

10

¬

Step 3: Producing Proofs
● Let’s simplify our secret_session_keys encoding:

session_key_established ∧ ¬ adversary_performs_reveals
⇒ ¬ adversary_knows_key

session_key_established ∧ ¬ adversary_performs_reveals
∧ adversary_knows_key

● Tamarin looks for a protocol execution that contains
session_key_established and adversary_knows_key but that does not use
adversary_performs_reveals

10

¬

Step 3: Producing Proofs
● Let’s simplify our secret_session_keys encoding:

session_key_established ∧ ¬ adversary_performs_reveals
⇒ ¬ adversary_knows_key

session_key_established ∧ ¬ adversary_performs_reveals
∧ adversary_knows_key

● Tamarin looks for a protocol execution that contains
session_key_established and adversary_knows_key but that does not use
adversary_performs_reveals

10

¬

{counterexample} = attack!{ } = property holds!

Step 3: Producing Proofs
● Tamarin translates the encoding into a constraint system - refines

knowledge until it can determine that the encoding holds in all cases, or
that a counterexample exists

● Tamarin uses a set of heuristics to determine what to do next
● ‘Autoprove’ or ‘Interactive’

10

10

Will eventually show
that there is no solution

- the set is empty

10

10

Needed to write
and prove

45
auxiliary lemmas!

10

10

+ mutual

10

+ mutual

+ mutual

10

+ mutual

10

+ mutual

Finding An Attack 10
+

Client
Cert_S
Server

nc, g^x

ns, g^y, Cert_S ECDH Handshake
(unilateral, only mentioning relevant items)

Compute session_hash that includes ns, nc, Cert_S

Cert_C
Client Server

Please authenticate

{ session_hash, Cert_C }sk(C)
Post-handshake
Client authentication

psk
Client

psk
Server

nc [, g^x]

ns [, g^y] PSK [-DHE]

Compute session_hash that includes ns, nc

ECDH Handshake

Cert_A
Client Alex Forum

ECDH

authenticates Forum

Adversary

Atta
ck

 se
tu

p!

Client
Cert_B

Server Bank

ECDH

authenticates Bank 2x ECDH Handshake

Cert_A
Client Alex Forum

ECDH

authenticates Forum

Adversary

nc2 [, g^x’]

ns2 [, g^y’] 2x PSK [-DHE]

Client
Cert_B

Server Bank

ECDH

authenticates Bank 2x ECDH Handshake

nc2 [, g^x]

ns2 [, g^y]

Cert_A
Client Alex Forum

ECDH

authenticates Forum

Adversary

Afterwards: drop connections

both session hashes are now based on nc2, ns2

nc2

ns2

nc2 [, g^x’]

ns2 [, g^y’] 2x PSK [-DHE]

Client
Cert_B

Server Bank

ECDH

authenticates Bank 2x ECDH Handshake

Please authenticate

{ session_hash, Cert_A }sk(A)
2x Post-handshake
Client authentication

nc2 [, g^x]

ns2 [, g^y]

Cert_A
Client Alex Forum

ECDH

authenticates Forum

Adversary

Afterwards: drop connections

Please authenticate

{ session_hash, Cert_A }sk(A)

both session hashes are now based on nc2, ns2

nc2

act as Alex!

ns2

sig

Attack!

Step 1: Building the Model
● TLS 1.3 was a rapidly moving target
● Draft 21 - a completely new protocol!
● We now modelled in a far more granular

fashion
○ higher transparency - good for us, also good

for everyone else!

21

model model

21

21

21

auto-provable

manual interaction

Step 2: Encoding Security Properties

Step 3: Producing Proofs 21

Security Property

Establishing the same session keys

Secret session keys

Peer authentication

Uniqueness of session keys

Downgrade protection (within 1.3)

Perfect forward secrecy

Key Compromise Impersonation (KCI) resistance

21

Security Property

Establishing the same session keys

Secret session keys

Peer authentication

Uniqueness of session keys

Downgrade protection (within 1.3)

Perfect forward secrecy

Key Compromise Impersonation (KCI) resistance

More fine-grained model →
more computational power
required

● 48-core machine,
512GB of RAM

● 10GB RAM to load, can
consume 100GB RAM
for a proof

● 1 week to prove entire
model

● 3 person-months of
modelling

See [CHHMS17]

21

Security Property

Establishing the same session keys

Secret session keys

Peer authentication

Uniqueness of session keys

Downgrade protection (within 1.3)

Perfect forward secrecy

Key Compromise Impersonation (KCI) resistance

More fine-grained model →
more computational power
required

● 48-core machine,
512GB of RAM

● 10GB RAM to load, can
consume 100GB RAM
for a proof

● 1 week to prove entire
model

● 3 person-months of
modelling

TLS 1.3 is Out There!

January 2019 -
10.7% of sites
support TLS 1.3!

https://www.ssllabs.com/ssl-pulse/

8% of connections

50% of traffic

What Lies Ahead?
● Feedback loop - modelling complex protocols is making Tamarin better

○ Improved precision (granularity) of modelling
○ Improve automation

What Lies Ahead?
● Feedback loop - modelling complex protocols is making tools better

○ Improved precision (granularity) of modelling
○ Improve automation

● TLS 1.3 extensions

What Lies Ahead?
● Feedback loop - modelling complex protocols is making tools better

○ Improved precision (granularity) of modelling
○ Improve automation

● TLS 1.3 extensions

Takeaways
● Logical core of TLS 1.3 seems sound!
● We have built a transparent model others can build on (Github)
● Many complementary approaches to analysing TLS
● Newer process allows for preemptive decision making and hopefully

produces a stronger protocol, requiring less patching

Resources
❏ TLS 1.3 analysis github page:

https://tls13tamarin.github.io/TLS13Tamarin/
❏ Papers:

❏ [CHSM16] Automated Analysis and Verification of TLS 1.3: 0-RTT, Resumption and
Delayed Authentication, https://ieeexplore.ieee.org/document/7546518/

❏ [CHHSM17] A Comprehensive Symbolic Analysis of TLS 1.3,
https://dl.acm.org/citation.cfm?id=3134063

❏ Symbolic analysis tools:
❏ [Tamarin] Tamarin Prover, http://tamarin-prover.github.io/
❏ [ProVerif] ProVerif, http://prosecco.gforge.inria.fr/personal/bblanche/proverif/

https://tls13tamarin.github.io/TLS13Tamarin/
https://ieeexplore.ieee.org/document/7546518/
https://dl.acm.org/citation.cfm?id=3134063
http://tamarin-prover.github.io/
http://prosecco.gforge.inria.fr/personal/bblanche/proverif/

Bonus Slide

See [CHHMS17] for details.

