Communication
Break Down

Bob Dahlberg
Mobile Lead Developer

QVIK

Coroutines

Coroutines

Lightweight threads

“Think of them as lightweight threads”
What do we mean by lightweight?

Should we treat them as threads?

Because they might be.

Coroutines

Lightweight threads

“Think of them as lightweight threads”
What do we mean by lightweight?
Should we treat them as threads?

Because they might be.

fun main() = runBlocking<Unit> {
repeat(100 _000) {
launch { // creates a coroutine
println(thread”)

h

Coroutines

Lightweight threads

“Think of them as lightweight threads”
What do we mean by lightweight?
Should we treat them as threads?

Because they might be.

repeat(100_000) {
launch §// creates a coroutine
println(thread”)

;

Coroutines

Lightweight threads

“Think of them as lightweight threads”
What do we mean by lightweight?
Should we treat them as threads?

Because they might be.

repeat(100_000) {
threead §f7// creates a thread
println(thread”)

;

Coroutines

Lightweight threads

“Think of them as lightweight threads”
What do we mean by lightweight?
Should we treat them as threads?

Because they might be.

repeat(100 _000) {
launch(Dispatchers.Default) § // 8 threads
println(thread”)

;

Coroutines

Lightweight threads

“Think of them as lightweight threads”
What do we mean by lightweight?
Should we treat them as threads?

Because they might be.

repeat(100 _000) {
launchCiE-patchers . E0) § /4 384 threads
println(thread”)

;

Coroutines

Lightweight threads

How about thread safety?

Coroutines

Lightweight threads

How about thread safety?

var 1 = 0
repeat(100 _000) {
launch(Dispatchers.Default) {
1 k=
h

h
println()

Coroutines

Lightweight threads

How about thread safety?

var 1 = 0
repeat(100 _000) {
launch(Dispatchers.I0) f{
1 k=
h

h
println()

Coroutines

Lightweight threads

How about thread safety?

var 1 = 0
repeat(100 _000) {
launch £

4=
h

h
println()

Coroutines

Lightweight threads

How about thread safety?

Nar 1 =0
launch(Dispatchers.Default) f{
repeat(100_000) {

launch £
1 += 1t
H
¥
println(T40)

Coroutines

Lightweight threads

How about thread safety?

var 1 = 0
launch(Dispatchers.Default) {
repeat(100 _000) {

launch {
I &= 1t
H
}
primntlnd 15

Coroutines

Treat them as threads?

So treat them as threads and we are fine?

Coroutines

Treat them as threads? Al. On thread main

A2. On thread worker-1

So treat them as threads and we are fine?

launch(Dispatchers.Unconfined) {
println(“Al. On thread $thread”)
delay(200)
println(“A2. On thread $thread”)

Coroutines

Al. On thread worker-1

Treat them as threads? Bl. Switching worker-3

A2. On thread worker-3

fun main() = runBlocking<Unit>{
launch(Dispatchers.I0) {
println(“Al. On thread $thread”)
switchContext()
println(“A2. On thread $thread”)

fun switchContext() {
withContext(Dispatchers.Default) {
println(“Bl. Switching $thread”)

;

Coroutines

Al. IO

Treat them as threads? B1. null

A2. Default

val local = ThreadlLocal<® :
fun main() = runBlocking<Unit>{
launch(Dispatchers.I0) {
local.set(CiT0")

printin(Al Si{local.cet()i}
switchContext()

peinttn@ A2, $ilocal .cetl)lh)

fun switchContext() {
withContext(Dispatchers.Default) {

println(Bl $ilocal get()8
local sett Defaultl)

Coroutines

Treat them as threads?

So treat them as threads and we are fine?

Coroutines

Treat them as coroutines!

So treat them as threads and we are fine?

Nope, treat them as coroutines!

COrOUt|ﬂeS Starting!

Ending!
Treat them as coroutines! Starting!

Ending!

Excellent example from Dan Lew (blog.danlew.net)

aSynchronized

fun criticalSection() f{
printlnC Startins!)
Thread.sleep(10)
println("Ending!")

h

repeat(2) f{
thread | critica | Section() f

;

http://blog.danlew.net

COrOUt|ﬂeS Starting!

Starting!
Treat them as coroutines! Ending!

Ending!

Excellent example from Dan Lew (blog.danlew.net)

aSynchronized
fun criticalSection() f{
printlnCiseant fnol)
delay(10)
println("Ending!")
h

repeat(2) {
launch(Dispatchers.Default) f{
criticalSection()

;

http://blog.danlew.net

Coroutines

Treat them as coroutines!

Excellent example from Dan Lew (blog.danlew.net)

fun criticalSection() f{
println()
Thread.sleep(10)
println()

;

repeat(2) {
launch(Dispatchers.Default) f{
criticalSection()

;

http://blog.danlew.net

L et's communicate
coroutine-style

Communication

Deferred

Deferred is a non-blocking cancelable future.

Communication

Deferred

Val result: Deferred<Response> = async f{
fetchChannels()

h

println()

Communication

Deferred

val result = async { delay(2000) }
val result2 = async { delay(1000) }

println(result.await()}"”)
println(result2.await()}")

Communication

Deferred — Temp(name=“Bob")

Deferred or

Deferred — Temp(name=“Charlie”)

class Temp(var name: String)

val result = CompletableDeferred<Temp>()
launch(Dispatchers.Default) f{
val temp = Temp("Bob")
result.complete(temp)
temp.name = "Charlie"

;

val temp = result.await()
println("Deferred — $temp")

Communication

Deferred

Deferred — Temp(name=“Bob")

class Temp(val name: String)

val result = CompletableDeferred<Temp>()

launch(Dispatchers.Default) {
result.complete(Temp("Bob"))
delay(1)
result.complete(Temp("Charlie"))

val temp = result.await()
println("Deferred — $temp”)

Communication

Deferred

class Temp(var name: String)

val result = CompletableDeferred<Temp>()
launch(Dispatchers.Default) {
result.complete(Temp()
delay(1)
result.complete(Temp()

;

launch(Dispatchers.I0) {
val temp = result.await()
println(temp”)

Communication

Channels

Channels provide a way to transfer
a stream of values.

Communication

Channels

val channel = Channel<String>()
launch(Dispatchers.Default) {

channel.send()
channel.send()
h
printing channel.receive()}")

printin(channel.receive()}")

Communication

Channels

val channel = Channel<String>()
launch(Dispatchers.Default) {
channel.send()

DEIRELDC channel.receive()}")

Communication

Channels

val channel = Channel<String>(1)
launch(Dispatchers.Default) {
channel.send()

DEIRELDC channel.receive()}")

Communication

Channels

hannel<String>(7) // BUFFERED

nannel<String>(Channel.UNLIMITED)
nannel<String>(Channel.CONFLATED)
nannel<String>(Channel.RENDEZVOUS)

(V@ 00N

Communication

Channels

val channel = Channel<String>()
launch(Dispatchers.Default) f{
channel.send()
channel.send()

h

println(channel.toList()}")

Communication

Channels

val channel = Channel<String>()
launch(Dispatchers.Default) {
channel.send()
channel.send()
channel.close()

printin(channel.toList()}")

Communication

Channels

Channels are synchronization primitives

Let’s see where they excel

Communication

Channels Name: Charlie | Name: Bob
Name: Bob | Name: Charlie
fun race(.St
delay(nextLong(5000))
return
}
val chi = Charnnel<Strinzs>()
EalipehC) 1 ch endCracet Bob)) |
TatinehC) ch: sendCracel ‘EhHarlie’))

launch(Dispatchers.Default) {
repeat(2) {

println(“Name: ${ch.receive()}")

h
chi.closcl)

Communication

Channels

val ch = Chanhel<int>()

launch(Dispatchers.Default) f{
repeat(30) { ch.send(it) }
ch.close()

h

repeat(3) { id —
launch(Dispatchers.Default) f{
for(msg in ch) {
println(“$id — $msg”)
h

Communication

Channels

val ch = produce {
repeat(30) { send(it) }
h

repeat(3) { id -
launch(Dispatchers.Default) {
ch.consumeEach {
pEintLpti%1d > $it")
h

Communication
Mutex

Mutex - Kotlins mutual exclusion

Communication

Mutex

var 1L =0
repeat(100 _000) {

launch(Dispatchers.]
=

h

printlnd)

Communication

Mutex

val mutex = Mutex()
Nar 1 =0
repeat (100 _000) {
launch(Dispatchers.Default) {
mutex.withLock {
T =k
h

h
println()

Communication

Mutex

val mutex = Mutex()
fun criticalSection() {
mutex.withLock {
println()
delay(10)
println()

h

Repeat2): 4
laumeh 1 critlealScctiont) .}

h

Communication
Flow

Flow - reactive streams contender

Communication

Flow

val example: Flow<Int> = flow f{
for(i in 1..10) {
emit(1i)
h
h

example.collect {
println("Value —)

;

Communication value = 10

Value — 12
Flow

Value — 20

val example = flow {
for(i in:1. 10) 4

emit(1i)
h
h
example.filter { > 57
.map { %5 L
collect %
println("Value —)

;

Communication value = 10

Value — 12
Flow

Value — 20

val example = (1..10).asFlow()

example.filter f{ = 5 3}
.map { %= D I
collect {
println("Value —)

h

Communication

Flow Flow on — main
Collect on — mailn

val example = flow {
for(i in:1. 10) 4

println(“Flow on —)
emit(1)
h
h
example.filter f{ = 53
.map { ke 1
colilect i
println(“Collect on —)

;

Communication

Flow Flow on — worker-1
Collect on — mailn

val example = flow {
for(i in 1..10) {
println(“Flow on — ${
emit(i)
h
}.flowOn(Dispatchers.Default)

example.filter { = O
.map { x L
.collect f{
println(“Collect on — ${

;

B

i)

Communication

Flow on — worker-1
Flow Map on — main
Collect on — mailn

val example = flow {
for(i in 1. 10 {

println(“Flow on — ${ P
emit(i)
h
$.flowOn(Dispatchers.Default)
example.filter f{ = 5
.map {
println(“Map on — ${ P
&k D
h
.collect {
println(“Collect on — ${ e

;

Communication

Flow on — worker-1
Flow Map on — worker-1

Collect on — mailn

val example = flow {
for(i in 1..10) {
println(“Flow on — ${

emitCl)
h
h
example.filter f{ > 5
.map {
println(“Map on — ${
k)
h
.flowOn(Dispatchers.Default)
.collect f{

println(“Collect on — ${
'

i)

)

£

Communication

Flow

val example = flow {
for(i in 1. 10)

println()
emit(i)
h
h
example.filter { > 5}

.flowOn(Dispatchers.IO)
.map { X
.flowOn(Dispatchers.Default)
. collect 4
printing)

h

Communication

Exception 1n thread "main"

Flow java.lang.IllegalStateException:

Flow 1nvariant 1s violated:

val example = flow {
withContext(Dispatchers.Default) f{
forCi 1n 1l 10) § emit(i) ¢

h

h

example.filter { > 57
.map { o
.collect {

println(“Collect on — ${ P
h

Thank you!

The deck is available on: https://speakerdeck.com/bobdahlberg

Wi /A

o il

Questions?

Bob Dahlberg
bob@qvik.com
medium.com/dahlbergbob
@mr_bob

https://speakerdeck.com/bobdahlberg

