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What do we mean by lightweight?
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Because they might be.

fun main() = runBlocking<Unit> {
repeat(100 _000) {
launch { // creates a coroutine
println( thread” )
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Lightweight threads

“Think of them as lightweight threads”
What do we mean by lightweight?
Should we treat them as threads?

Because they might be.

repeat(100 _000) {
launch(Dispatchers.Default) § // 8 threads
println( thread”)

;



Coroutines

Lightweight threads

“Think of them as lightweight threads”
What do we mean by lightweight?
Should we treat them as threads?

Because they might be.

repeat(100 _000) {
launchCiE-patchers . E0) § /4 384 threads
println( thread”)

;
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var 1 = 0
repeat(100 _000) {
launch(Dispatchers.Default) {
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How about thread safety?

var 1 = 0
repeat(100 _000) {
launch(Dispatchers.I0) f{
1 k=
h

h
println( )
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How about thread safety?

var 1 = 0
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launch £

4=
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Coroutines

Lightweight threads

How about thread safety?

Nar 1 =0
launch(Dispatchers.Default) f{
repeat(100_000) {

launch £
1 += 1t
H
¥
println( T40)



Coroutines

Lightweight threads

How about thread safety?

var 1 = 0
launch(Dispatchers.Default) {
repeat(100 _000) {

launch {
I &= 1t
H
}
primntlnd 15
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Coroutines

Treat them as threads? Al. On thread main

A2. On thread worker-1

So treat them as threads and we are fine?

launch(Dispatchers.Unconfined) {
println(“Al. On thread $thread”)
delay(200)
println(“A2. On thread $thread”)



Coroutines

Al. On thread worker-1

Treat them as threads? Bl. Switching worker-3

A2. On thread worker-3

fun main() = runBlocking<Unit>{
launch(Dispatchers.I0) {
println(“Al. On thread $thread”)
switchContext()
println(“A2. On thread $thread”)

fun switchContext() {
withContext(Dispatchers.Default) {
println(“Bl. Switching $thread”)

;



Coroutines

Al. IO

Treat them as threads? B1. null

A2. Default

val local = ThreadlLocal<® :
fun main() = runBlocking<Unit>{
launch(Dispatchers.I0) {
local.set(CiT0")

printin( Al Si{local.cet( )i}
switchContext()

peinttn@ A2, $ilocal .cetl)lh)

fun switchContext() {
withContext(Dispatchers.Default) {

println( Bl $ilocal get( )8
local sett Defaultl)
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Coroutines

Treat them as coroutines!

So treat them as threads and we are fine?

Nope, treat them as coroutines!



COrOUt|ﬂeS Starting!

Ending!
Treat them as coroutines! Starting!

Ending!

Excellent example from Dan Lew (blog.danlew.net)

aSynchronized

fun criticalSection() f{
printlnC Startins! )
Thread.sleep(10)
println("Ending!")

h

repeat(2) f{
thread | critica | Section( ) f

;


http://blog.danlew.net

COrOUt|ﬂeS Starting!

Starting!
Treat them as coroutines! Ending!

Ending!

Excellent example from Dan Lew (blog.danlew.net)

aSynchronized
fun criticalSection() f{
printlnCiseant fnol )
delay(10)
println("Ending!")
h

repeat(2) {
launch(Dispatchers.Default) f{
criticalSection()

;


http://blog.danlew.net

Coroutines

Treat them as coroutines!

Excellent example from Dan Lew (blog.danlew.net)

fun criticalSection() f{
println( )
Thread.sleep(10)
println( )

;

repeat(2) {
launch(Dispatchers.Default) f{
criticalSection()

;


http://blog.danlew.net

L et's communicate
coroutine-style



Communication

Deferred

Deferred is a non-blocking cancelable future.



Communication

Deferred

Val result: Deferred<Response> = async f{
fetchChannels()

h

println( )



Communication

Deferred

val result = async { delay(2000) }
val result2 = async { delay(1000) }

println( result.await()}"”)
println( result2.await()}")
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Deferred — Temp(name=“Bob")

Deferred or

Deferred — Temp(name=“Charlie”)

class Temp(var name: String)

val result = CompletableDeferred<Temp>()
launch(Dispatchers.Default) f{
val temp = Temp("Bob")
result.complete(temp)
temp.name = "Charlie"

;

val temp = result.await()
println("Deferred — $temp")



Communication

Deferred

Deferred — Temp(name=“Bob")

class Temp(val name: String)

val result = CompletableDeferred<Temp>()

launch(Dispatchers.Default) {
result.complete(Temp("Bob"))
delay(1)
result.complete(Temp("Charlie"))

val temp = result.await()
println("Deferred — $temp”)



Communication

Deferred

class Temp(var name: String)

val result = CompletableDeferred<Temp>()
launch(Dispatchers.Default) {
result.complete(Temp( )
delay(1)
result.complete(Temp( )

;

launch(Dispatchers.I0) {
val temp = result.await()
println( temp”)



Communication

Channels

Channels provide a way to transfer
a stream of values.



Communication

Channels

val channel = Channel<String>()
launch(Dispatchers.Default) {

channel.send( )
channel.send( )
h
printing channel.receive()}")

printin( channel.receive()}")



Communication

Channels

val channel = Channel<String>()
launch(Dispatchers.Default) {
channel.send( )

DEIRELDC channel.receive()}")




Communication

Channels

val channel = Channel<String>(1)
launch(Dispatchers.Default) {
channel.send( )

DEIRELDC channel.receive()}")




Communication

Channels

hannel<String>(7) // BUFFERED

nannel<String>(Channel.UNLIMITED)
nannel<String>(Channel.CONFLATED)
nannel<String>(Channel.RENDEZVOUS)

(V@ 00N



Communication

Channels

val channel = Channel<String>()
launch(Dispatchers.Default) f{
channel.send( )
channel.send( )

h

println( channel.toList()}")



Communication

Channels

val channel = Channel<String>()
launch(Dispatchers.Default) {
channel.send( )
channel.send( )
channel.close()

printin( channel.toList()}")



Communication

Channels

Channels are synchronization primitives

Let’s see where they excel



Communication

Channels Name: Charlie | Name: Bob
Name: Bob | Name: Charlie
fun race( .St
delay(nextLong(5000))
return
}
val chi = Charnnel<Strinzs>()
EalipehC ) 1 ch endCracet Bob ) ) |
TatinehC ) ch: sendCracel ‘EhHarlie’))

launch(Dispatchers.Default) {
repeat(2) {

println(“Name: ${ch.receive()}")

h
chi.closcl)



Communication

Channels

val ch = Chanhel<int>()

launch(Dispatchers.Default) f{
repeat(30) { ch.send(it) }
ch.close()

h

repeat(3) { id —
launch(Dispatchers.Default) f{
for(msg in ch) {
println(“$id — $msg”)
h



Communication

Channels

val ch = produce {
repeat(30) { send(it) }
h

repeat(3) { id -
launch(Dispatchers.Default) {
ch.consumeEach {
pEintLpti%1d > $it")
h



Communication
Mutex

Mutex - Kotlins mutual exclusion



Communication

Mutex

var 1L =0
repeat(100 _000) {

launch(Dispatchers. ]
=

h

printlnd )



Communication

Mutex

val mutex = Mutex()
Nar 1 =0
repeat (100 _000) {
launch(Dispatchers.Default) {
mutex.withLock {
T =k
h

h
println( )



Communication

Mutex

val mutex = Mutex()
fun criticalSection() {
mutex.withLock {
println( )
delay(10)
println( )

h

Repeat2): 4
laumeh 1 critlealScctiont) .}

h



Communication
Flow

Flow - reactive streams contender



Communication

Flow

val example: Flow<Int> = flow f{
for(i in 1..10) {
emit(1i)
h
h

example.collect {
println("Value — )

;



Communication value = 10

Value — 12
Flow

Value — 20

val example = flow {
for(i in:1. 10) 4

emit(1i)
h
h
example.filter { > 57
.map { %5 L
collect %
println("Value — )

;



Communication value = 10

Value — 12
Flow

Value — 20

val example = (1..10).asFlow()

example.filter f{ = 5 3}
.map { %= D I
collect {
println("Value — )

h




Communication

Flow Flow on — main
Collect on — mailn

val example = flow {
for(i in:1. 10) 4

println(“Flow on — )
emit(1)
h
h
example.filter f{ = 53
.map { ke 1
colilect i
println(“Collect on — )

;



Communication

Flow Flow on — worker-1
Collect on — mailn

val example = flow {
for(i in 1..10) {
println(“Flow on — ${
emit(i)
h
}.flowOn(Dispatchers.Default)

example.filter { = O
.map { x L
.collect f{
println(“Collect on — ${

;

B
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Communication

Flow on — worker-1
Flow Map on — main
Collect on — mailn

val example = flow {
for(i in 1. 10 {

println(“Flow on — ${ P
emit(i)
h
$.flowOn(Dispatchers.Default)
example.filter f{ = 5
.map {
println(“Map on — ${ P
&k D
h
.collect {
println(“Collect on — ${ e

;



Communication

Flow on — worker-1
Flow Map on — worker-1

Collect on — mailn

val example = flow {
for(i in 1..10) {
println(“Flow on — ${

emitCl)
h
h
example.filter f{ > 5
.map {
println(“Map on — ${
k)
h
.flowOn(Dispatchers.Default)
.collect f{

println(“Collect on — ${
'

i)

)

£



Communication

Flow

val example = flow {
for(i in 1. 10)

println( )
emit(i)
h
h
example.filter { > 5}

.flowOn(Dispatchers.IO)
.map { X
.flowOn(Dispatchers.Default)
. collect 4
printing )

h



Communication

Exception 1n thread "main"

Flow java.lang.IllegalStateException:

Flow 1nvariant 1s violated:

val example = flow {
withContext(Dispatchers.Default) f{
forCi 1n 1l 10) § emit(i) ¢

h

h

example.filter { > 57
.map { o
.collect {

println(“Collect on — ${ P
h



Thank you!



The deck is available on: https://speakerdeck.com/bobdahlberg
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Questions?

Bob Dahlberg
bob@qvik.com
medium.com/dahlbergbob
@mr_bob
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