
Optimizing rav1e
Luca Barbato



Intro

Who am I?

○ Luca Barbato
● rav1e and dav1d contributor among many other open source 

software.
● Contacts

○ lu_zero@gentoo.org / lu_zero@videolan.org

○ https://twitter.com/lu_zero_

○ https://github.com/lu-zero

2

mailto:lu_zero@gentoo.org
mailto:lu_zero@videolan.org


Intro

We will talk about rav1e and optimization

○ rav1e is an AV1 encoder
■ rav1e is written in Rust
■ With a fair amount of arch-specific SIMD

● Some written using stdarch intrinsics
● Lots shared with dav1d and written in plain assembly

■ A good deal of multi-threaded code
● Most leveraging rayon

○ We will see what tools helped in speeding up rav1e and how we 
proceeded about it.

3



Why optimizing?

● To enable some use-case
○ Optimizing for size so your application fits within some storage constraint
○ Optimizing for minimal latency so your application can be used in 

real-time scenarios
○ Optimizing for the least amount of cpu usage, so your application will not 

drain your mobile battery or burn your device to a crisp.
● To make some use-case cheaper

○ Optimizing for overall throughput so your application can process the 
largest amount of data for the amount of resources that your budget let 
you afford.

● To prove how smart you are
○ Ok, this is not a good reason...

4



Why optimizing rav1e?

● Every encoder may target different use-case
○ Best quality (according to some quasi-objective metric)

■ No matter the amount of time, memory and cpu used.

○ Single encoding speed
■ No matter the amount of resources, you want that the overall process takes the least 

amount of time.

○ Lowest possible latency
■ The time between the video frame entering the encoder and the packet containing it 

must be the least possible.

○ Maximum throughput
■ Largest amount of frames processed per amount of resources (memory and cpu) used.

With rav1e we want to provide a sweet spot among the 4, often 
conflicting, targets above.

5



Optimization?

Optimizing is an iterative process

1. Prepare the use-cases you want to optimize for
2. Measure their behavior

○ Change the code and go back to 2.
○ If the results are good enough you go back to 1. 

■ and change your optimization target

Let’s unpack it a little.

6



Optimization?

Optimizing is an iterative process

7



Optimization target selection

You may try to optimize for a number of metrics

● Speed
○ Single execution time
○ Latency

● Memory usage
○ Maximum resident set
○ Allocation count

● Throughput
○ Number of results per unit of time
○ Number of results per resource spent

● Quality
○ Application-dependent

8



Optimization target selection

For rav1e our main trade-off point is between Quality and Speed

● We try to alternate the main focus every release
○ 0.2.0 was mainly about speed
○ 0.3.0 was mainly about quality
○ 0.4.0 will be about throughput and latency

● Yet we try to keep a balanced approach
○ We try to keep the amount of memory used within reason
○ We try to not require too many cores
○ The quality/speed trade-offs are often re-evaluated

9



Optimization target selection

Notwithstanding the metric, you have to come up with good use-cases

● It should represent well the common usage of your application
● It can be non-exhaustive

○ Coverage 99% is unnecessary
○ Coverage 50%+ is nice to have

● It should the right amount of time and resources to execute, but not 
more than that.
○ Encoding hours of video vs encoding the right amount of frames 

to trigger the scene-change detection logic enough times.
○ Encoding 8k videos vs encoding 4k videos or even 1080p videos.

10



Use case

● For video encoding there are collections of short and not so short raw 
samples that are used to do quality and performance comparisons 
among encoders
○ We just have to select a subset that is well representative

■ The easiest way to do that is to run some encodes and measure the code coverage

● For rust there are a number of tools available
○ rustc has an not-yet stable -Zprofile flag that produces information that can 

be parsed and formatted by grcov, gcovr and similar tools.
○ kcov and cargo-kcov provide similar information without the need to have 

instrumented binaries. (It is 2x-3x faster than -Zprofile, but less precise)

○ tarpaulin is a pure-rust solution, but currently supports only linux on x86_64 
and pure-rust binaries. (Sadly does not work for my use-case)

11

https://github.com/rust-lang/rust/issues/42524
https://github.com/mozilla/grcov
https://gcovr.com
https://simonkagstrom.github.io/kcov/
https://github.com/kennytm/cargo-kcov
https://crates.io/crates/cargo-tarpaulin


Optimization target selection

12



Profiling and Benchmarking

Once we have our set of use-cases we have to profile it

● And possibly produce benchmarks out of it

13



Profiling and Benchmarking

I split the process of measuring in two

● Profiling the full use-case execution instrumenting the application
○ Figuring out what are the slow paths
○ Getting a list of potential places to optimize first

● Writing and executing more precise benchmarks to measure how the 
selected code-paths behave
○ The profiling instrumentation slows down the execution 

potentially many-folds
○ Executing the benchmarks should take much less time, by few 

orders of magnitude

NOTE: Doing well in microbenchmarks may not translate in doing as well 
in the actual use case 14



Profiling - Speed

We have a number of tools we can use to extract useful information

○ hyperfine is quite useful to get you an overall measurement and its noise. 
■ If the variance is low you can do without having too many runs.

○ (cargo-)flamegraph produces nice interactive flamegraphs
■ It uses under the hood perf or dtrace, so it supports a good variety of systems.

○ not-perf is a pure-rust alternative to perf
■ It produces similar flamegraphs and it can be more viable than perf sometimes.

○ uftrace is a faster function-tracer that works coupled with 
-Zinstrument-mcount

■ Supports only Linux on x86(_64) and ARM/AArch64, and produces all sort of useful data 
presentation including flamegraphs and chrome-tracing json

○ cargo-instruments makes even easier to use Xcode Instruments.

15

https://crates.io/crates/hyperfine
https://crates.io/crates/flamegraph
https://github.com/koute/not-perf
https://github.com/namhyung/uftrace
https://github.com/rust-lang/rust/pull/57220
https://crates.io/crates/cargo-instruments


Profiling - Speed

● We want to the amount of time spent per-function, for all the functions.
● We want to profile our corpus at least once

○ If the top 10 functions are always the same we can select a reduced use-case

● If possible we should prepare a unit-test-like benchmark
○ If it is too much effort we can just use the reduced testcase

■ We can use lightweight probes instead of fully profile

● Once we start using threads we should try to be aware of the critical path
○ Every improvement in functions running in parallel has less global impact

■ The focus should move to the functions that are in the least parallelized paths first

○ Running in parallel sub-tasks from a tasks that is already parallelized requires 
additional care

○ Lightweight probes such as hawktracer come handy to visualize what is 
going on.

16

https://github.com/AlexEne/rust_hawktracer


Profiling - Speed

17



Profiling - Memory

● Memory
○ gnu time and getrusage provide a quick way to get the overall maximum 

resident set for a single run.
○ malt provides a large amount of information regarding memory usage

■ Its web-ui is among the nicest available
■ It has multiple means to trace the memory allocation, allowing a large degree of 

platform support

○ memory-profiler is a linux-only memory tracer
■ It provides a rich web-ui and supports visualizing multiple traces
■ It supports only x86(_64), ARM/AArch64 and mips64.
■ Faster than the default malt, but not as straightforward to use.

○ cargo-instruments can be used to trace the memory usage on macOS.
○ heaptrack provides a really nice GUI that works great if you have KDE.

■ malt and memory-profiler both provides compatible outputs.

18

https://www.gnu.org/software/time/
http://man7.org/linux/man-pages/man2/getrusage.2.html
https://github.com/memtt/malt
https://github.com/koute/memory-profiler
https://crates.io/crates/cargo-instruments
https://github.com/KDE/heaptrack


Profiling - Memory

● We want to keep the maximum resident set to the minimum
○ The smaller it is the higher the number of concurrent instances

● We want to minimize the number of allocations as well
○ The higher the number, the higher the chance to fragment the 

memory
○ Allocating and deallocating in an hot path is highly disruptive

■ A syscall might be involved
■ You are almost certain to fragment the memory
■ Your cache access pattern might be ruined

● We want to make sure we do not leak memory
○ Leaking memory is safe and possible in rust, but unlikely.

19



Profiling - memory-profiler

memory-profiler does not come with a run-script like malt, so I you can come up with one like:

20



Profiling - memory-profiler

21



Benchmarking

The rust built-in benchmarking support is still currently in flux, within the pending 
testing framework overhaul

● As measuring speed or throughput goes criterion does provide a fairly rich 
API to build good micro-benchmarks and paired with critcmp gives fairly 
good results

○ Just make sure you disable the built-in bench support.

● There isn’t anything as good to precisely measure the memory usage, to my 
knowledge, so using the memory profilers over the standard tests is the most 
viable solution.

22

https://github.com/rust-lang/rust/issues/66287
https://github.com/rust-lang/rust/issues/50297
https://crates.io/crates/criterion
https://crates.io/crates/critcmp


Changing the code

23



Changing the code

There are many strategies one could use, here is mine:

○ Maximize the impact
■ Pick the easiest code-path among the top 5

● Optimize and get some instant gratification
■ Iterate until all the functions at the top are similar metrics-wise

○ Try to be conservative with the tradeoffs
■ Try first to get improvements w/out impairing other metrics.
■ Try to set some kind of budget, thinking of your ideal users.

○ Always be ready to undo some early work
■ And to accept your work could be undone

● It is not disrespectful to delete code

24



Changing the code - Speed

In order to be fast you have the following choices

○ Use less resources
■ By improving the algorithm in use
■ By avoiding unneeded computation

○ Use the same resources but in better ways
■ Leverage the SIMD extensions available
■ Cache locality optimization

○ Use more resources
■ Multithread processing

25



Changing the code - SIMD everything

A good deal of code is inherently parallel.

● The rav1e works together with the dav1d in sharing the SIMD 
assembly optimized routines that are common between encoders 
and decoders, nasm-rs and cc-rs make the integration fairly easy.

● Encoder-specific codepaths are usually optimized using the rust 
arch-specific intrinsics.

● Since the Rust language provides more chances for the compiler to 
unroll and auto-vectorize a good part of the codebase it is compiled 
to SSE2 instructions on x86_64 and NEON instructions on AArch64.
● Using -C target-features=+avx2,+fma produce an even faster 

binary, with the shortcoming of working only on recent CPUs.

26

https://crates.io/crates/nasm-rs
http://crates.io/crates/cc
https://github.com/rust-lang/stdarch/


Changing the code - Multi-threading

○ Writing multithreaded code is usually cumbersome and error prone.
■ In rust most of the common pitfalls are just impossible.
■ The standard library offers already good primitives, including easy 

to use channels.
○ There are external crates that make even easier to make high 

performance multi-threading implementations.
■ parking_lot replacing the standard library primitives with better 

ones.
■ crossbeam sporting better channels and additional primitives.
■ rayon provides an easy to use threadpool and let you convert 

normal Iterators in parallel iterators in literally one line of code.

27

https://doc.rust-lang.org/std/sync/mpsc/fn.channel.html
https://crates.io/crates/parking_lot
https://crates.io/crates/crossbeam
https://github.com/rayon-rs/rayon


28

● AV1
This is our main encoding loop

● Presence in operating systems
○ What’s missing?

■ Encoders
● Slower than you’d wish
● Resource hungrier than you would afford
● Not for all the use-cases

○ Realtime

Changing the code - rayon



29

● AV1
This is our main encoding loop, multithreaded

● Presence in operating systems
○ What’s missing?

■ Encoders
● Slower than you’d wish
● Resource hungrier than you would afford
● Not for all the use-cases

○ Realtime

Changing the code - rayon



30

● AV1
This is our main encoding loop, multithreaded

● Presence in operating systems
○ What’s missing?

■ Encoders
● Slower than you’d wish
● Resource hungrier than you would afford
● Not for all the use-cases

○ Realtime

Changing the code - rayon



31

● AV1
Adding par_iter() requires that the Iterator obeys certain constraints
● It is working on Send data types
● It is not mutating variables captured by the closure

That may require some initial refactor but it usually pays off well.

Currently we are using crossbeam channels to experiment with additional 
levels of parallelism and provide the users an alternative channel-based API.

Changing the code - rayon

https://github.com/crossbeam-rs/crossbeam
https://github.com/rust-av/rav1e/tree/channel-api


32

● AV1
Optimizing the memory usage is usually less interesting
● Most of the dynamic allocation come from Vec-overuse

○ ArrayVec/SmallVec/TinyVec let you use the same Vec API but using a 
stack-allocated fixed size array as backing storage.

■ This makes the memory access cheaper
■ Gets you less allocations
■ Depending on your workload does not increase a lot the resident set.

○ arraydeque and similar richer stack-based data structures might come handy
■ But they might be less used and tested, so use additional care.

● You might have unneeded intermediate buffers
○ In this case you might use creatively the standard Iterator trait
○ itertools may come handy as well.

Changing the code - Memory

https://crates.io/crates/arrayvec
https://crates.io/crates/smallvec
https://crates.io/crates/tinyvec
https://crates.io/crates/arraydeque
https://doc.rust-lang.org/std/iter/trait.Iterator.html
https://crates.io/crates/itertools


Changing the code - Memory

Live allocations for rav1e 0.1.0: 6039 peak

33



Changing the code - Memory

Live allocations for rav1e 0.2.0-p20191201: 3500 peak

34



Changing the code - Memory

Live allocations for rav1e current (da62d7a46): 3000 peak

35



Questions?

Thank You

36


