

LibreOffice graphics
subsystems:

System-Dependent PrimitiveRenderers (SDPR’s)

Providing a working Example and report about progress/findings
during development

Armin Le Grand
2023-02-04, 17:10, H.1308 Rolin

FOSDEM 2023

What is it about?

I talked about SDPRs at last LibreOffice Conference (link is here). SDPRs
are an alternative to render completely without using VCL/OutputDevice
or Backends. Instead, render Primitives to a system-specific graphic sub-
system directly.
This next step in rendering for the office was planned since the design of
Primitives, but is stuck due to missing resources.
When preparing that talk, I started to develop a reference implementation
and promised to finish it – what I did in the meantime.
This talk is about that SDPR (using Direct2D) and some additional
experiments I did to also offer possible solutions for ‘old’ Paint-code.

https://events.documentfoundation.org/libreoffice-conference-2022/talk/VTLBLQ/

(1) What happens when Painting?

● EditViews use Primitives quite extensively, e.g. SdrObjects, full
EditView display in Draw/Impress, all GraphicObjects, Overlay,
TextSelection, …

● Created/Buffered Primitives get thrown at a Primitive-Processor
(Renderer) to get them painted

● Currently this uses a Renderer that targets to use OutputDevice, called
VCLProcessor, versions for targeting Pixel/Metafile exist

● The VCLPixelRenderer interprets/processes the Primitives, creates
needed commands to call at OutputDevice to paint (tesselation), thus is
hard coded/programmed against OutputDevice API

(2) What happens when Painting?

● OutputDevice does all possible stuff internally (partially crude, old, strange, hard-to-
maintain stuff…) and calls a ‚Backend‘. Those Backends are the system-dependent
implementations that e.g use Cairo/GDI+/X11/others to do the rendering. Originally
this was GDI for Win and X11 for linux/unix

● The Primitives do eventually some decompositions - depending on the processor
implementation, direct support of primitives to not trigger that is possible anytime :-)

● VCL‘s OutputDevice processes through about 4-6 layers internally, tessellating and
preparing system-independent render data, old code paths/stuff. It already has some
more modern parts (double, transformation, B2D* class usages), but *still* all old
integer stuff and MapModes

● The Backends again can have quite some depth/overhead/buffering (have a look :-))

(1) Why did it develop to that State?

● Before Primitives/Processors there were direct ‚Paints‘ at SdrObjects (call it immediate mode) and
everywhere unstructured distributed over the whole office (e.g. local ‚optimizied‘ repaints of single
changes, etc…)

● These already used Backends, but there were only view of them. Often stuff was ‚added centrally‘ to
OutputDevice (e.g. RTL anyone - of course not as transformation, but as hard repositioning)

● More hacks were/are in the upmost libraries/Apps (SW/SC) just because adding it there was known to
be bad, but allows to do stuff without getting incompatible :-/ (build times in the past - meh)

● With Primitives things changed to a SceneGraph/Rendering approach for these objects. Just as in-
between step and as proof of concept that VCL Processors were created initially, as a migration path.

● The long term/medium plan always was to have SDPRs. Unfortunately the transition to these and further
work was interrupted by the fork to LibreOffice & the reactions to this, so we are stuck with these until
today

● Originally I estimated to use these for a maximum of 4-5 years, replacing ASAP with SDPRs - in the
order of importance of the target systems

(2) Why did it develop to that State?

● I did quite some presentations on Primitives and how they are intended to be used all those
years, tried to find resources & filed tenders to continue that transition and be an ambassador
to get support to drive this forward, but I barely succeeded

● I watched quite some work/resources being sunk into new Backends - what is one possibility
to render using different renderer technologies on target systems, as e.g. OpenGL (did one
already 20 years ago, same problems surfaced) and Skia (distributed throughout the whole
office, many places with ‚adaptions‘,…)

● Think of It as a ‘Stack’ of four parts – Primives, Processor, OutputDevice, Backend. Just too
complex and too deep

● All of these can - by principle - only be partially successful since they do *not* reduce the
above described hierarchy/many layers of complexity and processing of the graphic data
(sigh)

● A SDPR replaces the last three with a single, system-dependent Processor

(1) What did I do to impl that SDPR?

I had started to implement a demonstration/reference SDPR, using Direct2D on Windows. I had
promised to continue that, and I did. We now have a Direct2D renderer for Win that can render
Primitives *without* using OutputDevice/VCL or using any Backend at all, thus eliminating all
these layers – completely. POC done.
It is feature-complete:

● All have-to support Primitives are implemented:
– Four of them (Bitmap, PointArray, PolygonHairline, PolyPolygonColor)

● All have-to support grouping/encapsulating Primitives are implemented:
– Three individual ones (Transparency, Invert, Mask)
– Two standard ones (same in all processors: ModifiedColor, Transform)

● Quite some extended Primitives are added already:
– Currently Eight, see below for more info

(2) What did I do to impl that SDPR?

The Direct2D SDPR renderer is implemented in a single source file in the
drawinglayer project (2000+ lines?)

● It does not need any hacks/compromises/adaptions elsewhere in the office code to
render on Direct2D

● It translates Primitive data directly to Direct2D calls/data as needed
● It uses the already available system-dependent buffering for path/bitmap data

(which can be used for any system-dependent data anytime, but was not for ‚some‘
reasons..?)

● It does not need e.g. Bitmap/BitmapEx to be adapted in any form to that renderer
● It its quite fast, you can try it yourself: It‘s in master and can be activated by a ENV-

Variable (TEST_SYSTEM_PRIMITIVE_RENDERER=true).

What extended Primitives are added?

● UnifiedTransparence: Optimizes the case that all child content is defined to
have a single, unified transparency value

● PolygonStroke: Optimizes stroked lines, also fat lines (non-hairline) and
the combination of both. On Direct2D, the tesselation could even be
buffered. This is not done yet, but …

● FillGraphic: Optimizes PatternFilled areas, including that old ugly OffsetXY.
Takes care of pixel fill, but also vector data like SVG/Metafile/PDF

● MarkerArray: e.g. Grid, BackgroundColor: fast color reset
● Line/FilledRectangle, SingleLine: Simplified Primitives for faster

implementation of fallbacks (see below)

What else can be done?

What the renderer does not have (yet - can be extended in a compatible way anytime):
● Text - still uses decompose, so gets painted as AntiAliased PolyPolygons. Can be added

anytime, e.g usage of DirectWrite, this time in an existing Direct2D context
● Gradients - many possibilities, e.g. just locally render non-AAed, but also may be done as

custom ‚Effect‘ in Direct2D. A this place you know that a gradient needs to be painted and
have the full definition and transformation

● Anything else that is still resource- or time-intense...
Thus, with some more work, this could easily be extended to product quality. It just would need
the resources to do that.
It is far advanced over the state of a demonstration implementation already.
I used Direct2D as an example since I did not know too much about it (learning effect) and we
do not have that yet - to test the concept and myself...

What also happened:

● Caolan started a SDPR implementation for Cairo based on that example implementation -
thanks, man!

● It will need some more love, though, it‘s in a basic state but already renders something
● With a feature-complete SDPR for Cairo we would have a fast and working fallback for

most/many cases, so this would be an important step to continue this to product quality state,
too

So we now have POC of a working SDPR (even two) and the example implementation in
drawinglayer (as orientation for others). No need to hack anything or to have Primitives in VCL
library.
I also did some upstream stuff and added this to master during the journey - so this is out of the
way, too, using that prototype experiment.
I also started a system-independent tooling library to support SDPR implementations. There are
some cases between SDPRs where similar paint preparations have to be done.

How to get non-Primitive paint to SDPRs?

So - this works for EditView visualizations, but
● not all Paints use Primitives fully (Writer/Calc/UI,...)
● what about printing?

– Except Win all use PDF export anyways & we can keep VCLRenderer as fallback for
some time, too…

– OTOH Direct2D states to support printing, so another area to check before usage
Either change all those over time (hah!) or maybe there is a possibility to render VCL-
calls to the OutputDevice API also on SDPRs? I checked that and did two further POC-
experiments:
(A) Forward calls in the Backends to a SDPR
(B) Do a general DrawForwarder in OutputDevice

(A) Forward calls in the backends to SDPR

● Has not too many calls, quite lean API (14?)
● The Backends *are* libraries of their own, so they can just link against drawinglayer and use

processors/primitives from there directly (thus no need to use primitives in VCL)
● Still has to step/chew through all that old stuff in all that layers of OutputDevice, so this concept will

not get rid of that mayhem
● Has to create temporary Primitives to throw at the SDPR (could do on stack, but there is a clang-test

that requires ref-counted stuff to be held/fed to a reference holder - is that clever..?)
● May need optimizations (Start|End/Draw for better optimizing in SDPRs, usage of draw cycles,

processors as resources, …)
● Only a *single* Backend implementation is needed, that will work with any SDPR due to Primitives

being unified in their definitions
It works just fine :-) I did a working prototype which redirects ::DrawRect(…), fill & line dependent on
Pen/Brush, see gerrit (here). To test it out, just add as patch, compile & used mentioned ENV-Variable.

https://gerrit.libreoffice.org/c/core/+/143407

(B) Do a general DrawForwarder in OutputDevice

● I use a pure virtual class definition in VCL, offering calls to potentially all Paint-calls from OutputDevice you
want/need to handle/forward (not all needed at once). All OutputDevice API that actually draws something
may potentially use that

● If the forwarder says OK (using boolean retval), draw is done, else continue old stuff
● DrawForwarder would be a general way to isolate Metafile functionality, e.g. recording, PDF export, Printing,

etc., and if set, use it - certainly too much cleanup work for now, maybe not worth it on OutputDevice, but
systematically a good possible ‚split‘ of the do-it-all-in-one place old stuff. It would allow a ‘structured’ version
of OutputDevice

● I Did a minimal DrawForwarder in drawinglayer, forwarding a factory/constructor for it to VCL
● VCL knows the pure virtual base class, so incarnates & calls (again) ::DrawRect(…) if activated
● The DrawForwarder implementation in drawinglayer can use all OutputDevice settings, the target

OutputDevice is fully accessible to get data (Colors, LineStyle, FillStyle, Clipping/Region, Font, …)
It also works just fine :-), see working prototype at gerrit (here).
CAUTION: Both of these POCs *need* a SDPR, else you will get a loop-of-death immediately (!)

https://gerrit.libreoffice.org/c/core/+/144243

(1) How to go forward…?

Which way to continue? Which solution to use?
● Best:

– Convert all LO to use Primitives everywhere
– Implement SDPRs for all used/needed systems in order of importance
– Keep VCLProcessor as fallback

● Medium:
– Combine with solution (A) or (B)

● I would strongly recommend (B), since (A) will keep the VCL implementations ‚alive‘ for eternity. When (B) is done, these
layers of OutputDevice may be dismantled/removed completely (one day, just dreaming…)

● (A) has the lighter API, but (B) has more potential from my POV
● Worst:

– Keep stuff as it is, probably due to *still/again* not getting/activating resources for this, just because it‘s
not visible/painful enough for the user – sigh...

(2) How to go forward…?

I am Still ready/capable/interested to do this, but...
● Already did the POC/Prototype & POCs of future migration

possibilities – mostly in private
● Cannot continue doing that in private with the needed intensity to

get that done
So - without getting resources - this will fail *again* and we will stay
at VCL/OutputDevice forever - have fun then, and don’t complain!
We have choices - I presented the possibilities here…

(Probably no...) Time for Questions…?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17

