RTLinux in an FPGA

Alejandro Lucero
alucero@os3sl.com

RTLinux in a FPGA

1. OpenRTU Project
2. FPGAs and soft processors

3. uClinux
4. RTLinux in Microblaze

RTLinux in a FPGA

1. OpenRTU Project

Spanish Industrial Research Project (Nov, 2004 — May,

20006)
Financed by Spanish Industrial Ministry (PROFIT)

Consortium:
TELVENT: real time company, RTUs
ESI: European Software Institute, Product Line
CSIC: Scientific Research Institution, FPGA Design

OS3: embedded Linux company, RTLinux

RTLinux in a FPGA

1. OpenRTU: Project Goal

Building a new generation of RTUs (Remote Terminal
Units) using FPGAs and Open Source.

More Flexibility

Faster Development

Better Scalability

Avoiding Obsolescence Challenge

RTLinux in a FPGA

1. OpenRTU Project: Results

uClinux .)

A p rot Oty p e bu llt an d runn 1 n g u Cl 1 nux - 4
and RTLinux in Microblaze

HARD Real Time requirements
achieved (Initially, 1ms)

RTLinux in a FPGA

2. FPGAs and soft processors

FPGA: Field Programmable Gate Array

Device containing programmable logic and programmable
interconnects.

Field programmable = it can be programmed after the
manufacturing process in the field

You can program the HW !!!

RTLinux in a FPGA

2. FPGAs: How it can be programmed

FPGA design using VHDL (VHSIC & HDL)

An Electronic Automation Tool obtains a netlist from the
VHDL code

Place & Route software fits the netlist to the FPGA
Validation through timing analysis, simulation and
verification tools

A bitstream 1s generated to program the logic gate array

RTLinux in a FPGA

2. FPGAs: How it can be programmed

You can add IP (Intellectual Property) Cores to your
design: libraries of predefined complex functions and
CIrcuits

IP Cores: buses, codecs, DSPs, interfaces, ... and
Processors

Soft processors (FPGA logic): picoblaze (Xilinx),
Microblaze (Xilinx), Nios (Altera), LatticeMico32

RTLinux in a FPGA

2. FPGAs: Microblaze soft processor

Xilinx Microblaze (4.0) 32 bits processor
Three-stage pipeline

RISC, Harvard architecture

Configurable Code and Data Caches
Hardware Debug Logic

Non-MMU processor

RTLinux in a FPGA

3. uClinux

Linux for non MMU processors

Available ports: DragonBall, Coldfire, QUICC,
ARMT7DMI, Intel 1960, Blackfin, Microblaze, NEC V&850

Commercial products based on uClinux: IP cameras,
wireless routers, VoIP based telephones

RTLinux in a FPGA

3. uClinux: drawbacks

No protection between tasks, and even worse: a user
process can crash the system

This 1s the most well-known 1ssue, but it 1s not the only
one

Using Linux code 1s not automatic

RTLinux in a FPGA

3. uClinux: non MMU problems

Processes are created using the viork system call instead
fork

user stack per process 1s static in size

memory management done by the OS 1s different
dynamic libraries are not available (at least as standard)

RTLinux in a FPGA

3. uClinux: Microblaze Architecture

Port done 1n 2003 by John Williams, from Queensland
University in Australia

uCLinux 2.4 in Microblaze 1s being used in several
commercial products

Xilinx has recently released the uClinux 2.6 for
Microblaze

RTLinux in a FPGA

4. RTLinux

RTLinux 1s a hard real time microkernel
Interrupts are virtualized for Linux

Linux runs as the task with the lowest priority inside
RTLinux: Linux 1s the 1dle task for RTLinux

RTLinux in a FPGA

+ PRIORIDAD -

o

VIRTUALIZACION DEL HARDWARE ‘

HW ‘

RTLinux in a FPGA

RTLinux Virtualization technology

PROTECCION
DE
MEMORIA

SUPERVISOR

RTLinux in a FPGA

4. RTLinux in Microblaze

RTLinux DOES NOT need an MMU (but can use it)

RTLinux needs Linux or uClinux: uClinux port in
Microblaze done by John Williams 1in 2003

What HARD real time performance can be achieved with
a '/5Mhz soft processor running a GPOS?

RTLinux in a FPGA

4. RTLinux in Microblaze: Doing the PORT

We had some initial doubts about the technology

These doubts were reinforced when we found a bug in the
processor IP core implementation

This led us to put most of the blame on the technology
when latencies were not as expected

RTLinux in a FPGA
4. RTLinux in Microblaze: Doing the PORT

We decided to divide the work clearly:

1) Interrupts virtualization layer
2) RTLinux microkernel

In case of problems with the full RTLinux microkernel
coexisting with uClinux kernel, we could just make use of
the virtualization mechanism for a simple system
executing critical code when an event raises an interrupt
without uClinux interference

RTLinux in a FPGA
4. RTLinux in Microblaze: Doing the PORT

Once the Interrupt Virtualization layer was implemented, first tests
showed latencies higher than expected

The measurements were done with the timer interrupt, and Linux
could be interfering with the results

We decided to wait until we knew what latencies we had with the
full RTLinux microkernel working

But we suspected OPB (On-Chip peripheral Bus) was
introducing the delays

RTLinux in a FPGA

4. RTLinux in Microblaze: Doing the PORT

The second part of the work was done to implement the full
RTLinux microkernel: threads creation and destruction,
scheduling, timer programming (one shot and periodic) and threads
synchronization and communication

The RTLinux microkernel code 1s composed of architecture
specific part, and by independent architecture which will run
without changes

RTLinux in a FPGA
4. RTLinux in Microblaze: Doing the PORT

Once the full RTLinux microkernel was implemented, tests showed
peak latencies higher than expected

We did some code inspection but in C language level

Due to our initial doubts about the uncertainty of the technology,
we suspected OPB was introducing the delays

This took us to the longest route to solve the problems, but on the
positive side, this was not a complete waste of time.

RTLinux in a FPGA

4. RTLinux in Microblaze: Doing the PORT

The solution taken was to make use of a special Microblaze

configuration avoiding the execution of real time code from
DRAM or SRAM

LMB and Microblaze caches have 1 cycle access

The 1dea was to allocate the real time code into these special

memories avoiding the peak latencies when the code had to go
through the OPB

RTLinux in a FPGA

External Memory External Memory
Controller Controller

Micoblaze CPU Core

Instruction-side
OPB Data-side OPB

Instruction-side
LMB Data-side LMB

Dual Port
A Block RAM B

RTLinux in a FPGA

4. RTLinux in Microblaze: Doing the PORT

Drawbacks when using 1 cycle access memories

LMB Ram Blocks are used by FPGA designers, so we can not take
them for free.

Microblaze cache is write-through, so if the problem 1s when RAM
or SRAM is accessed, we are in the same point

RTLinux in a FPGA

4. RTLinux in Microblaze: Doing the PORT

The first problem was maximum space available (Spartan3) using
LMB was 16Kbytes (just 12Kbytes aligned)

RTLinux modules:
> rtl.o: 8192 bytes (only code)

> rtl_time.o 2264 bytes (only code)
> rtl_sched.o 13692 bytes (only code)

RTLinux in a FPGA

4. RTLinux in Microblaze: Doing the PORT

RTLinux code distribution was modified, creating a new module
where '"real"” real time code 1s allocated

In the old modules we left the code just used during 1nitialization

the new module rtl_previous_core had a final size of 8K, so it
could be allocated in the LMB

RTLinux in a FPGA

4. RTLinux in Microblaze: Doing the PORT

We did other changes in uClinux related with interrupts code: a new
section was created in the elf kernel file for this code, and during
the initialization it 1s copied to LMB

Once we had all the code related with real time 1in 1 cycle memory
access, we did new tests and ...

Peaks latencies had survived the attack

RTLinux in a FPGA

4. RTLinux in Microblaze: Doing the PORT

Technology was absolved. We had the real guilty:

The RTLinux Port Implementation was buggy

RTLinux in a FPGA
4. RTLinux in Microblaze: Doing the PORT

Some problems hard to find:

Microblaze has not lock instructions: changes in set_bit, test_bit,
clear _bit, test and_set, test and clear, which need to disable
interrupts.

Some cli uClinux operations were not being virtualized

compilation flags: muls and divs by software introduce high
latencies

buggy gcc 2.95 with 64 bits operations (needed for timers)

RTLinux in a FPGA
4. RTLinux in Microblaze: Results

Microblaze
Periodic Caches Code at | System Load task jitter irqg timer worst
Task Enabled LMB? case

oo | e | Ne
s | e | Ne
soows | Yes | Yes
s | v | ve
N

)

0

|

Stressed

Stressed

N
N

: Y
S

Yes RRAM | No SRAM| ‘Stressed

0
]
‘es
‘es
0
0
‘es
, / /

RTLinux in a FPGA
4. RTLinux in Microblaze: Doing the PORT

Conclusions

we followed the longest route to achieve the hard real time
performance

The wusual way would had been to suspect first that the
implementation 1s buggy, but we had some preconceived ideas...

On the positive side, we have now the best performance we can get
using RTLinux and uClinux in Microblaze

RTLinux in a FPGA

Thank you

Alejandro Lucero
alucero@os3sl.com

