
NEOLOGICS, FEBRUARY 2007

The Current Phone Problem.

PC Mobile Phone

Service Google, Yahoo, AOL, Windows Live, YouTube

Apps Web browser. All kinds of vertical
niche applications.

No Open Solution

GUI Common “desktop” paradigm

Input Generic: usually keyboard, mouse, and
monitor

Specialized: keypad, buttons, and
inconsistent (and often limited) screen
space

HW x86 (Intel, AMD, VIA) Lots of different platforms

But if we view this merely as an
engineering problem to be solved...
• Then we WILL create a mobile phone that

mimics a PC. We can do better than a 1960s
vision.

• We would solve the problem, but we will fail to
create new forms of computing.

• That’s winning a battle, but losing the war.

• So how do we create a new form of computing?

• Who is in charge? Or better yet, WHAT is in
charge?

How to be God.

• The KEY to making complex, neoforms appear
from simple systems is:

• Access to the Building Blocks. The Amino
acids of the systems. The Atoms of
Molecules.

• Freedom to WRITE new rules of combination.

• Let’s take an example of starting small...

Big fleas have little fleas
on their backs to bite them,
and little fleas have lesser fleas,
and so ad infinitum.
What happens when you start small and iterate?

• Sometimes it’s the smallest, most simple
concepts that work best.

• So take something small and begin...

It all starts small...

Then iterate.

• The first iteration interpreted graphically looks
like this:

And do it again.

• The next iteration interpreted graphically might
look something like this:

Ok. Now what?
We have some basic building blocks in place...

Let’s Define Some Rules...

And You Can Do This:

Even this!

Does This Look Familiar?

Now We’re Done.

Closed systems lead to controlled
predictable evolution. NOT new
species. Not Neos. Not punctuated
equilibriums. Neos initially look
like genetic errors. Mistakes.
But they survive and outperform.
If we just recreate the PC on the Phone, it will be just
another Flea. We need new species...

Standing on each other’s shoulders.

• Mere Access to atoms and rules is Necessary
but not sufficient to creating new life forms.

• Lots of curves can fill this space, but only some
will prove fruitful.

• The Combinatorial explosion within the design
space requires a freedom for many to
experiment.

• We need Collective wisdom and imagination.

OpenMoko 2007 Software Stack.

Mobile Handset Hardware (FIC Neo1973)

Linux 2.6 Kernel & Device Drivers

udev blueZ dbus GSM GPS

matchbox GTK+2

kdrive 7 libX11

Linux Core Services (Linux User Interface)

core net UI PIM

(OpenMoko Application Framework)

X11
Applications

D
ia

le
r

(Finger Applications)

M
a

in
 M

e
n

u

M
e

d
ia

 P
la

y
e

r

C
lo

c
k

s

(o
th

ers)

C
o

n
ta

c
ts

(Stylus Applications)

M
e

s
s

a
g

e
s

A
p

p
lic

a
tio

n
 M

a
n

a
g

e
r

S
e

a
rc

h

(o
th

ers)

W
e

b
 B

ro
w

s
e

r
(3rd Party Applications)

IM

B
o

o
k

 R
e

a
d

e
r

T
e

rm
in

a
l

(o
th

ers) O
p

e
n

 E
m

b
e

d
d

e
d

x
8

6
 S

D
K

(Target Board) (PC)

GPL

LGPL

GPL

1) Atomic Access.
These are the building blocks of our system.

OpenMoko’s Application Framework.

• libmokocore – IPC,
Device Control,
Application State.

• libmokoui – Common
look & feel.

• libmokonet – high-level
connection queries.

• libmokopim – high-level
PIM APIs.

core

net

UI

PIM

(OpenMoko Application Framework)

libmokocore: At a Glance.

• OpenMoko IPC API

• run_contacts_application
(“new_phone_number”, “555-273-172”);

• Device Control API

• device_set_display_brightness(device, 100);

• s = device_get_signal_strength(device,
MC_PERIPHERAL_GSM);

• Uses dbus(-glib), libgconf, libgconf-bridge

libmokoui: At a Glance.

• Full base GTK+ widgets

• Additional phone widget
classes on top of GTK+

libmokonet: At a Glance.

• peers = get_file_sinks(BT | INTERNET);

• at_home = gps_within_region(“at_home”);

• gsmconn = gsm_connection_new
(“555-728-1829”);

libmokopim: At a Glance.

• Will probably never be written…

• Just use libebook, libecal, libcamel, and
friends…

2) Freedom to Write Rules.
The ability to create your own combinations.

The OpenMoko User Interface.

• openmoko-panel

• openmoko-<application>

• openmoko-footer

openmoko-panel: At a Glance.

• Always visible and global for all applications.

• We just use matchbox-panel-2, lightweight gtk+-
based panel

• Panel applet plugin host

• Panel plugins are shared libraries

• ${libdir}/matchbox-panel/*.so

• Read on startup of mb-panel-2

openmoko-<application>: At a
Glance.

• Stylus applications

• Finger applications

• X11 legacy applications

openmoko-footer: At a Glance.

• Task Manager

• Status Bar

• Temporary Notification area

• Application Toggling

3) Labs to Experiment.
Lots of people trying new stuff.

OpenMoko Application Development.

• Writing a Stylus
Application

• Writing a Finger
Application

• Using Other Widgets

Stylus Applications: Overview.

• MokoPanedWindow – base
class for stylus windows

• MokoMenuBox – application
menu, filter menu

• <Navigation Widget> – e.g.
GtkTreeView

• MokoToolBox – search,
action buttons

• <Details Widget> – e.g.
GtkLabel

Finger Applications: Overview.

• MokoFingerWindow – Base
class for finger windows

• MokoFingerButton – Large,
finger-friendly button

• MokoFingerWheel –
Scrolling, mode changing
(icon indicates mode)

• MokoFingerToolBox – Three
(or more) tools per page,
multiple pages possible

Other Widgets.

• MokoDialogWindow –
Full-screen modal dialog,
can use any Gtk+ widget

• Field Widgets

• View mode

• Edit mode

• More...

4) Feedback.
Collective experimentation leads to new life forms.

2007 Finger Applications.

PHASE 1 PHASE 2

Dialer

Clocks
Screen Saver
Calculator
Unit Converter
Game
Guitar Tuning
Code Memo

Your Applications...

Main Menu

Music Player

History

2007 Stylus Applications.

PHASE 1 PHASE 2

Contacts
Feed Reader
Messages
Preferences
Media Player
Sketchbook
Terminal
IM
Web Browser
Reader
System Info

Your Applications...

Dates

Application Manager

Today

openmoko.org

Wiki Bugzilla Planet Projects Lists

Community Resources.

{openmoko.org}

In 1973, Marty Cooper
invented the mobile phone.
This gave birth to an industry.
We’re going to revolutionize
it again. Only this time, you
will write the rules.
Welcome to the New 1973. The future is open.

The Neo1973: Write
Your Own Rules.

Your Mobile Lab for Experimentation.

Create New Building Blocks.

Cost Breakdown.
Description Retail

Standard Kit

Neo1973
Battery
Headset
Compact Charger
Carrying Case
Stylus
Lanyard
MicroSD Card
Micro USB Connectivity Cable
Instruction Manual and Warranty

US$350

Car Kit
Windshield Mount and Device Holder
Car Charger
External Antenna

US$75

Hacker’s
Lunchbox

Development Board
Battery
Compact Charger for Development Board
FPC
Shoulder Strap
USB A-B

US$200

Our 2007 Roadmap.

Neo1973 Open R&D (Feb. 12)
openmoko.org Opened (wiki, bugzilla, source, ...)

Neo1973 Phase 0 (Early Mar.)
First Phones are Freed

Neo1973 Phase 1 (Late Mar.)
Developer Sales Begin

Neo1973 Phase 1+ (Jun.)
Hardware Refresh

Neo1973 Phase 2 (Sept.)
Mass Market Stage

“Never send a human to do a
machine’s job.”
Agent Smith, 1999.

Why in God’s name don’t we use
phones and humans to do this...
• Schedule a call on your calendar

• Get your approval, check your time zone.

• Request to dial you at the appointed time...

“Neo... Call Mickey when he
and I are both available.”

The PC is maladaptive. The
Phone is maladaptive. Don’t
follow the phone. Leapfrog it.
The key is to achieve what the
PC and the phone intended.
Computing everywhere. Intuitive computing. Computing
that is as natural to us as finger painting.

The 21st Century’s Opportunity.

OpenMoko
Freedom to write new
rules of combination.

Ubiquitous Computing
Our devices learn us rather than

us learning our devices.

BA

{Simple Systems} {Complex Forms}

How do simple systems evolve into
complex forms?
• Open access to Essential building blocks

• Processor, input subsystems, output
subsystems

• Open access to Rules for combining and
controlling these subsystems

• Freedom by many to experiment

• A marketplace to reward Success

• OpenMoko provides this stuff

Our Business Model.

OpenMoko
(Open Mobile Communications Platform)

Business 1 Business 2 Business n

CPU

Modem GPS

WiFi

Base Rules

Manufacturing
& Sales

OpenMoko Development Kit

Neoforms

New Rules New Rules New Rules

Business 3

New Rules

Now, “Free Your Phone.”
Thanks for Your Time.
Mickey Lauer & Sean Moss-Pultz

