
A New C++11 Stack

David Chisnall

February 5, 2012

C++: Who Cares?

Hardware Vendors love ’optimised’ C++ code that lets them sell
more RAM and faster processors

Software Developers love the job security that complex template
metaprogramming provides

Users want to run things like FireFox and OpenOffice

Author's Note
Comment
C++ is a language that is designed to run microbenchmarks. Unfortunately, people take the microbenchmarks seriously and overlook the shortcomings like lack of abstraction and poor performance in large code, so we have to support it.

Why Do We Need a New C++ Stack?

• WG21 released a new standard while no one was looking

• GCC 4.2.1 / GNU libstdc++ don’t support it

• (And they’re GPL’d)

• (And newer versions are GPLv3)

• (Which is, like, bad and stuff)

Author's Note
Comment
Since the GNU stack switched to a license that's even more restrictive, we've been stuck with an old (and still not very nicely licensed) C++ stack.

GPL: FUD

• I might have to do expensive rewrites or release my code if I
accidentally violate it (fear)

• I don’t know if what I want to do will violate it (uncertainty)

• I’m not sure I understand this big blob of legalese (doubt)

GPLv3 comes with twice as much FUD as v2! (e.g. permanent
termination of license in case of violation)

Author's Note
Comment
The old code isn't great because anything GPL'd comes with an unhealthy dose of fear, uncertainty, and doubt.

BSD / UIUC License: No FUD

• I know exactly what I can do with this code (anything except
claim I wrote it)

The Technical Problem

• C++11 provides things like r-value references that allow some
optimisation (move semantics)

• Supporting this touches almost every function / method in
STL and amounts to an almost total rewrite of libstdc++

• So maybe we should actually do a complete rewrite of
libstdc++?

• And all of the other bits too?

Author's Note
Comment
We could fork the old version of the GNU stack and add all of this new stuff, but that would mean an almost complete rewrite and still leave us with a GPLv2 implementation. A complete rewrite seems more sensible, and fortunately some people at Apple agreed and did most of the work.

A C++ Stack

kernel

libc

ABI / Runtime Library

STL Implementation

C++ Programs

C++ Source

C++ Compiler

Author's Note
Comment
A C++ stack consists of several important parts. The compiler generates object code using headers from the STL implementation and then links them with the STL implementation. It will also insert calls to the ABI library for things like exception handling and RTTI.

The GNU C++ Stack

kernel

libc

libsupc++

libstdc++

C++ Programs

C++ Source

g++

Author's Note
Comment
This is what the C++ stack in FreeBSD 9.0 looks like.

The New C++ Stack

kernel

libc

libcxxrt

libc++

C++ Programs

C++ Source

clang++

Author's Note
Comment
And this is what the one in 10.0 should look like.

What Needed Porting

• Libcxxrt was developed for FreeBSD, tested on Linux

• Libc++ was developed on Darwin, tested on... Darwin

• Clang++ was developed on many platforms, tested
everywhere (even on Windows sometimes)

Author's Note
Comment
libcxxrt was written by me for PathScale and open sourced by the FreeBSD and NetBSD Foundations. libc++ was mostly written by Howard Hinnant at Apple and released publicly, although not in a very cross-platform state.

Libc++ and Locales

• Libc++ uses a lot of l libc functions

• These were missing on FreeBSD

• Implemented as a result of FreeBSD Foundation funding

• Some other bits were Darwin-libc specific

Author's Note
Comment
Darwin libc had a load of functions that take explicit locales. These are used in libc++, but were not present in FreeBSD. I implemented these under sponsorship from the FreeBSD foundation.

The Port

• Very minor changes to libc++

• Implement the missing bits in libc

• Modify the test suite to use locale names that are valid on
FreeBSD and Darwin (e.g. en US.UTF8 instead of en US)

Author's Note
Comment
Once these were done, only a few bits of libc++ needed tweaking. Most of these were related to <ctype> because every libc does (different) ugly hacky things to make ctype.h fast.

Current Status

• Libcxxrt and libc++ are in FreeBSD Trunk

• Test suite passes more tests than on Darwin (yay!)

• Atomics currently waiting for me to finish implementing them
for C in clang

• Should be enabled in FreeBSD 9.1, default in 10

• Please test!

Author's Note
Comment
Right now, the new stack is in FreeBSD -CURRENT. It works, but needs more testing. It isn't enabled by default, because libc++ needs to be built with a C++11 compiler and the default compiler is still g++. This will change soon...

How To Test

The old GNU stack:

$ g++ foo.cc

$ g++ foo.o

Clang with the GNU libraries

$ clang++ foo.cc -stdlib=libstdc++

$ clang++ foo.o -stdlib=libstdc++

The new stack

$ clang++ foo.cc -stdlib=libc++

$ clang++ foo.o -stdlib=libc++

Default for clang is currently libstdc++, but it won’t be forever...

Author's Note
Comment
Once you've built FreeBSD -CURRENT with this enabled, you just need to add -stdlib=libc++ to your CXXFLAGS and LDFLAGS and it should Just Workâ—¢.

Other Ports

• Someone at Google started a GNU/Linux port, but glibc is
too much pain to work with so they gave up.

• Ruben Van Boxem has worked on a Windows port (missing
Windows ABI support in clang is currently the blocker there).

• Solaris port sponsored by Tbricks underway, should be finished
in February.

• NetBSD? OpenBSD? Minix?

Author's Note
Comment
This new stack is already shipping with Darwin and will ship with FreeBSD soon. I hope to have it available on Solaris by March and someone is working on Windows. Having it on other BSDs would be great and I'm willing to help anyone who is doing the ports...

Questions?

