

Minemu

Protecting buggy software from memory corruption attacks

Traditional Stack Smashing

Address Space Layout Randomisation

DEP / NX

buf[16]

GET / HTTP/1.100baseretnarg1arg2

This is still not enough

harder than against stack overflows.

- ASLR can be brute forced
- - Protecting against heap overflows is much

Return Oriented Programming

buf[16]

GET / HTTP/1.100baseretnarg1arg2

But the situation is even worse

But the situation is even worse - needs to be enabled at compile time, and

there is a lot of old code out there

But the situation is even worse

 needs to be enabled at compile time, and there is a lot of old code out there

 many packages do not apply these defence mechanisms even today

But the situation is even worse

- needs to be enabled at compile time, and there is a lot of old code out there

- many packages do not apply these defence mechanisms even today
- flaws in how ASLR/stack cookies are implemented

>> DEP prevents untrusted data from being run as code

Can we do more?

Can we do more?

>> DEP prevents untrusted data from being run as code

to original code.

<< ROP replaces untrusted code with pointers</pre>

_	ν.

Can we do more?

>> DEP prevents untrusted data from being run as code

<< ROP replaces untrusted code with pointers
to original code.</pre>

>> Can we prevent untrusted pointers from being used
as jump addresses?

Taint analysis

0805be60									00								ļ		
0805be70	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00			
0805be80	00	00	00	00	02	00	00	00	d8	4b	06	80	a0	2e	05	80		K	
0805be90	94	be	05	08	78	a 0	04	08	ef	be	ad	de	a4	be	05	80	X		[
0805bea0	ac	be	05	80	2f	62	69	6e	2f	73	68	00	a4	be	05	08	/bi	n/sh	
0805beb0	00	00	00	00	45	49	4e	44	42	41	5a	45	4e	45	49	4e	EIN	DBAZENE	EN
0805bec0	44	42	41	5a	45	4e	45	49	4e	44	42	41	5a	45	4e	45	DBAZENE	INDBAZEN	VE
0805bed0	00	00	00	00	41	5 a	45	4e	90	be	05	80	ef	1f	05	08	AZE	N	. j
0805bee0	ff	fa	26	80	ff	f0	00	00	00	00	00	00	00	00	00	00	&		j
0805bef0	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	<u> </u>		j
0805bf00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00			j

Taint tracking (1/2):

when the result is always 0

- remember whether data is trusted or not
- untrusted data is 'tainted'

- taint is ORed for arithmetic operations, except

- when data is copied, its taint is copied along

Taint tracking (2/2):

When the code jumps to an address in memory, the source of this address is checked for taint.

- eg.:
- RET
 - CALL *%eax
- JMP *0x1c(%ebx)

Taint tracking

useful, but slow as hell

Is this slowness fundamental?

memory layout use SSE registers to hold taint

Memory layout (linux)

mov EAX, (EDX)

```
mov EAX, (EDX)
```

address:

EDX

```
mov EAX, (EDX)
address:
    EDX
taint:
    EDX+const
```

```
mov EAX, (EDX+EBX*4)
address:
    EDX+EBX*4
taint:
    EDX+EBX*4+const
```

Is this slowness fundamental?

memory layout

use SSE registers to hold taint

add EDX, x

add EDX, x

add EDX, x

vector insert

add EDX, x

Effectiveness

Application	Type of vulnerability	Security advisory
Snort 2.4.0	Stack overflow	CVE-2005-3252
Cyrus imapd 2.3.2	Stack overflow	CVE-2006-2502
Samba 3.0.22	Heap overflow	CVE-2007-2446
Memcached 1.1.12	Heap overflow	CVE-2009-2415
Nginx 0.6.32	Buffer underrun	CVE-2009-2629
Proftpd 1.3.3a	Stack overflow	CVE-2010-4221
Samba 3.2.5	Heap overflow	CVE-2010-2063
Telnetd 1.6	Heap overflow	CVE-2011-4862
Ncompress 4.2.4	Stack overflow	CVE-2001-1413
Iwconfig V.26	Stack overflow	CVE-2003-0947
Aspell 0.50.5	Stack overflow	CVE-2004-0548
Htget 0.93	Stack overflow	CVE-2004-0852
Socat 1.4	Format string	CVE-2004-1484
Aeon 0.2a	Stack overflow	CVE-2005-1019
Exim 4.41	Stack overflow	EDB-ID#796
Htget 0.93	Stack overflow	
Tipxd 1.1.1	Format string	OSVDB-ID#12346

Performance

Performance

Doesn't prevent memory corruption, only

arbitrary code execution.

acts when the untrusted data is used for

Tainted pointer dereferences

tainted pointer->some field = useful untainted value;

Does not protect against non-control-flow exploits:

```
void try_system(char *username, char *cmd)
    int user rights = get credentials(username);
    char buf[16] = strcpy(buf, username);
    if (user rights & ALLOW SYSTEM)
        system(cmd);
    else
        log error("user %s attempted login", buf);
```

in some cases we can add validation hooks.

_IO_vfprintf() in glibc can be hooked to check
format strings for taint.

mysql_query() can be hooked to check for taint
outside of literals in SQL queries.

Minemu

git clone https://minemu.org/code/minemu.git

any questions?

