Minemu

Protecting buggy software from
memory corruption attacks
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Traditional Stack Smashing
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Address Space Layout Randomisation
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This 1is still not enough
- ASLR can be brute forced

- Protecting against heap overflows is much
harder than against stack overflows.



Return Oriented Programming
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But the situation 1s even worse

- needs to be enabled at compile time, and
there 1s a lot of old code out there

- many packages do not apply these defence
mechanisms even today

- flaws in how ASLR/stack cooklies are implemented
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Can we do more?
>> DEP prevents untrusted data from being run as code

<< ROP replaces untrusted code with pointers
to original code.

>> Can we prevent untrusted pointers from being used
as jump addresses?



Taint analysis
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Taint tracking (1/2):

remember whether data is trusted or not

- untrusted data is 'tainted'

- when data is copied, its taint 1is copied along
- taint is ORed for arithmetic operations, except
when the result is always 0



Taint tracking (2/2):

When the code jumps to an address in memory,
the source of this address is checked for taint.

eg.:

- RET

- CALL *%eax

- JMP *0x1lc(%ebx)






Taint tracking

o: sammydavisdog@flickr
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~but slow as hell



Is this slowness fundamental?

minemu

memory layout
use SSE registers to hold taint
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Memory layout (minemu)
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Memory layout (minemu)

linux write to x
kernel

minemu

TAINT

X+const



Memory layout (minemu)

— taint
data to

lINUX user
kernel memory

minemu
user

N TAINT data to

taint
memory



Addressing shadow memory

mov EAX, (EDX)



Addressing shadow memory

mov EAX, (EDX)
address:

EDX



Addressing shadow memory

mov EAX, (EDX)
address:

EDX
taint:

EDX+const



Addressing shadow memory

mov EAX, (EDX+EBX*4)
address:

EDX+EBX*4
taint:

EDX+EBX*4+const



Is this slowness fundamental?

minemu

memory layout
use SSE registers to hold taint



Taint propagation in SSE regqisters
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Taint propagation in SSE regqisters
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Taint propagation in SSE regqisters
add EDX, x
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Taint propagation in SSE regqisters
add EDX, x
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Taint propagation in SSE regqisters
add EDX, x

___q

Xxmmb5 T(X) |
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Effectiveness

Application Type of vulnerability|Security advisory
Snort 2.4.0 Stack overflow |CVE-2005-3252
Cyrus imapd 2.3.2 Stack overflow |CVE-2006-2502
Samba 3.0.22 Heap overflow |CVE-2007-2446
Memcached 1.1.12 Heap overflow |CVE-2009-2415
Nginx 0.6.32 Buffer underrun  |[CVE-2009-2629
Proftpd 1.3.3a Stack overflow |CVE-2010-4221
Samba 3.2.5 Heap overflow |CVE-2010-2063
Telnetd 1.6 Heap overflow |CVE-2011-4862
Ncompress 4.2.4 Stack overflow |CVE-2001-1413
Iwconfig V.26 Stack overflow  |CVE-2003-0947
Aspell 0.50.5 Stack overflow  |CVE-2004-0548
Htget 0.93 Stack overflow |CVE-2004-0852
Socat 1.4 Format string CVE-2004-1484
Aeon 0.2a Stack overflow |[CVE-2005-1019
Exim 4.41 Stack overflow  |[EDB-ID#796
Htget 0.93 Stack overflow

Tipxd 1.1.1

Format string

OSVDB-ID#12346




Normalized runtime
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Normalized runtime
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Limitations



Limitations

Doesn't prevent memory corruption, only
acts when the untrusted data 1is used for

arbitrary code execution.



Limitations
Tainted pointer dereferences

->some_field = useful untainted value;



Limitations

Does not protect against non-control-flow exploits:

void try_system(char *username, char *cmd)

{

int user_ rights = get_credentials (username);
char buf[16] = strcpy(buf, username);
if (user_rights & )
system(cmd) ;
else
log error( , buf);



in some cases we can add validation hooks.

in glibc can be hooked to check
format strings for taint.

can be hooked to check for taint
outside of literals in SQL queries.



Minemu

git clone https://minemu.org/code/minemu.git

any questions?
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