Minemu

Protecting buggy software from
memory corruption attacks

VRIJE
UNIVERSITEIT
N° AMSTERDAM

Traditional Stack Smashing

buf[16]

Ge /] e /A

Address Space Layout Randomisation

buf[16]

Ge /] e /A

DEP | NX

guf (16]
GE|T |/| HT 1 0[0blals
LI.COD %lrl&* ()

EQRTI EYSANRTHERTHINGS)

This 1is still not enough
- ASLR can be brute forced

- Protecting against heap overflows is much
harder than against stack overflows.

Return Oriented Programming

buf[16]

Ge /] e /A

ol BEGRSMS R | |.|. | Rl gzl

pointer to useful code

But the situation 1s even worse

But the situation 1s even worse

- needs to be enabled at compile time, and
there 1s a lot of old code out there

But the situation 1s even worse

- needs to be enabled at compile time, and
there 1s a lot of old code out there

- many packages do not apply these defence
mechanisms even today

But the situation 1s even worse

- needs to be enabled at compile time, and
there 1s a lot of old code out there

- many packages do not apply these defence
mechanisms even today

- flaws in how ASLR/stack cooklies are implemented

Can we do more?

Can we do more?

>> DEP prevents untrusted data from being run as code

Can we do more?
>> DEP prevents untrusted data from being run as code

<< ROP replaces untrusted code with pointers
to original code.

Can we do more?
>> DEP prevents untrusted data from being run as code

<< ROP replaces untrusted code with pointers
to original code.

>> Can we prevent untrusted pointers from being used
as jump addresses?

Taint analysis

0805be60
0805be70
0805be80
0805be90
0805beald
0805beb0
0805becO
0805bed0O
0805bee0
0805bef0
0805bf00

00
00
00

00
ff
00
00

00
00
00

00
fa
00
00

00
00
00

00
26
00
00

00
00
00

00
08
00
00

00
00
02

ff
00
00

00
00
00

fo
00
00

00
00
00

00
00
00

00
00
00

00
00
00

00
00
d8

00
00
00

00
00
4b

00
00
00

00
00
06

00
00
00

00
00
08

00
00
00

00
00
ao

00
00
00

00
00
2e

00
00
00

00
00
05

00
00
00

00
00
08

00
00
00

Taint tracking (1/2):

remember whether data is trusted or not

- untrusted data is 'tainted'

- when data is copied, its taint 1is copied along
- taint is ORed for arithmetic operations, except
when the result is always 0

Taint tracking (2/2):

When the code jumps to an address in memory,
the source of this address is checked for taint.

eg.:

- RET

- CALL *%eax

- JMP *0x1lc(%ebx)

Taint tracking

o: sammydavisdog@flickr

3

~but slow as hell

Is this slowness fundamental?

minemu

memory layout
use SSE registers to hold taint

Memory layout (linux)

Memory layout (minemu)

Memory layout (minemu)

liINuX
kernel

minemu

TAINT

Memory layout (minemu)

linux write to X
kernel

minemu

TAINT

Memory layout (minemu)

linux write to x
kernel

minemu

TAINT

X+const

Memory layout (minemu)

— taint
data to

lINUX user
kernel memory

minemu
user

N TAINT data to

taint
memory

Addressing shadow memory

mov EAX, (EDX)

Addressing shadow memory

mov EAX, (EDX)
address:

EDX

Addressing shadow memory

mov EAX, (EDX)
address:

EDX
taint:

EDX+const

Addressing shadow memory

mov EAX, (EDX+EBX*4)
address:

EDX+EBX*4
taint:

EDX+EBX*4+const

Is this slowness fundamental?

minemu

memory layout
use SSE registers to hold taint

Taint propagation in SSE regqisters

1
Xxmmb5 scratch I:reglster

RVSECTY - BCT
T
) g

128-bit

Taint propagation in SSE regqisters
add EDX, x

1
Xxmmb5 scratch I:reglster

RVSECTY - BCT
T
) g

128-bit

Taint propagation in SSE regqisters
add EDX, x

___q

'
Xxmmb s:%cr::atg:h irebis:;te:r
e[Tiem) [EIEEN Teed

Taint propagation in SSE regqisters
add EDX, x

___q

XxXmmb u
ome. [e [T Teor

vector insert

Taint propagation in SSE regqisters
add EDX, x

___q

Xxmmb5 T(X) |
LR (C NN T(ecx) | T(edx) ' T(ebx)

or

Effectiveness

Application Type of vulnerability|Security advisory
Snort 2.4.0 Stack overflow |CVE-2005-3252
Cyrus imapd 2.3.2 Stack overflow |CVE-2006-2502
Samba 3.0.22 Heap overflow |CVE-2007-2446
Memcached 1.1.12 Heap overflow |CVE-2009-2415
Nginx 0.6.32 Buffer underrun |[CVE-2009-2629
Proftpd 1.3.3a Stack overflow |CVE-2010-4221
Samba 3.2.5 Heap overflow |CVE-2010-2063
Telnetd 1.6 Heap overflow |CVE-2011-4862
Ncompress 4.2.4 Stack overflow |CVE-2001-1413
Iwconfig V.26 Stack overflow |CVE-2003-0947
Aspell 0.50.5 Stack overflow |CVE-2004-0548
Htget 0.93 Stack overflow |CVE-2004-0852
Socat 1.4 Format string CVE-2004-1484
Aeon 0.2a Stack overflow |[CVE-2005-1019
Exim 4.41 Stack overflow |[EDB-ID#796
Htget 0.93 Stack overflow

Tipxd 1.1.1

Format string

OSVDB-ID#12346

Normalized runtime

oOrr NN W

oOrr NN W
\

Performance

HTTP

- Lighttpd Apache

‘ddanndddum

]/F@ JO/®\700 ,(»5”78 \7047 J/® JO/F@JOO \7@@]047

H'I_I'PS

) nghttpd

- Apache -
HI dddd HI il HI dd I

J/r@ JO/®\700 5@8 \7047 J/® 10/®J00 4’5@@]0478

Normalized runtime

O N W &~ WU

O B N W

Performance

SPECINT 2006 yeral
*ﬁfffff E T TR -
HHIIHIHIH'HH s
400 0 J 0)3 429 g S 456 45(9 6 '46‘ 9>, 4> € qc? OI/
oS T ?/,O gCC cr ‘9o b /7/)7/)7\?/@/79 /qu /79 6\;;.0/77/76;682(+5 A /29//
ek S N, OF o R
I | I | I VVVVV I VVVVVV |
gzip OpenSSH PostgreSQL MediaWiki
(scp+sshd) (pgbench) (HTTPS)

Limitations

Limitations

Doesn't prevent memory corruption, only
acts when the untrusted data 1is used for

arbitrary code execution.

Limitations
Tainted pointer dereferences

->some_field = useful untainted value;

Limitations

Does not protect against non-control-flow exploits:

void try_system(char *username, char *cmd)

{

int user_ rights = get_credentials (username);
char buf[16] = strcpy(buf, username);
if (user_rights &)
system(cmd) ;
else
log error(, buf);

in some cases we can add validation hooks.

in glibc can be hooked to check
format strings for taint.

can be hooked to check for taint
outside of literals in SQL queries.

Minemu

git clone https://minemu.org/code/minemu.git

any questions?

VRIJE
4 UNIVERSITEIT
AN AMSTERDAM

