
Introduction Data Hiding Inference Pretending to be JavaScript ARC Message Sending

New Features in Objective-C

David Chisnall

February 4, 2012

Introduction Data Hiding Inference Pretending to be JavaScript ARC Message Sending

Some Buzzwords

• Apple released OS X 10.7 and iOS 5 with ‘Apple’s LLVM 3.0
Compiler.’

• This is like everyone else’s LLVM 3.0 compiler, but with more
bugs.

• Lots of new Objective-C features.

• Some require runtime support, some compiler support, most
both.

• After being mocked for making Objective-C 2 the version after
Objective-C 4, Apple no longer uses version numbers for
Objective-C.

Author's Note
Comment
The new version of Objective-C introduced with `Apple's LLVM Compiler 3.0' is the biggest set of changes to the language for a long time. At least as big as Objective-C 2. This time, they didn't come with a silly nonconsecutive version number, but also unfortunately didn't come with a sensible name either.

Introduction Data Hiding Inference Pretending to be JavaScript ARC Message Sending

Summary

• Better data hiding

• Better memory model

• Automatic reference counting

Author's Note
Comment
There are lots of new features, but they fall into these broad categories.

Introduction Data Hiding Inference Pretending to be JavaScript ARC Message Sending

What Do We Support?

All of it!
(with clang/llvm 3.0 and the GNUstep Objective-C Runtime 1.6)

And some other stuff!

Author's Note
Comment
This isn't just a good year for Objective-C, it's a great year for hippyware Objective-C: for the first time for ages, we support everything that Apple supports. For the first time ever, we actually support MORE than Apple.

Introduction Data Hiding Inference Pretending to be JavaScript ARC Message Sending

Better Data Hiding

• Ivars can now be declared in class extensions and
@implementation contexts.

• @interface is now just for the public interface.

• Coming Soon: Modules.

Author's Note
Comment
This is quite boring, but is long overdue. Now @interfaces can contain interfaces and @implementations can contain implementations. We don't need to pollute headers with implementation details. In classic Objective-C, the separation of interface and implementation was a bit weak. The interface contained the layout of the class, which meant that it contained a lot of implementation details. Now it contains nothing other than public methods and ivars.

Introduction Data Hiding Inference Pretending to be JavaScript ARC Message Sending

Example

�
// Foo.h

@interface Foo : NSObject

- (void)doStuff;

@end

// Foo_private.h

@interface Foo () {

@package

id semiprivateState;

}

@end

// Foo.m

@implementation Foo {

id privateState;

}

// methods

@end 	� �

Author's Note
Comment
We can now just put the public stuff in the public header. If multiple files need to see some ivars then we can put them in a class extension in the private header. If they don't, then we can put them in the implementation, where they should have been from the start.

Introduction Data Hiding Inference Pretending to be JavaScript ARC Message Sending

Method Families

• new, alloc methods return a new owning reference to an
instance of the receiver.

• init methods consume their receiver, return a new owning
reference of the same type as the receiver.

• copy, mutableCopy, return a new owning reference of the
same type as the receiver.

Information used by static analyser and by compiler

Author's Note
Comment
The method families are now part of the language. This is especially important for ARC, because it defines both how the methods are treated and how they are generated. Make sure that you respect these conventions! A method is a member of one of these families if it is explicitly flagged as such, or if it starts with one of these names, optionally followed by an uppercase letter.

Introduction Data Hiding Inference Pretending to be JavaScript ARC Message Sending

Objective-C++ goes to 11!

�
auto foo = [NSMutableString new];

// ...

[foo count]; 	� �
$ clang str.mm -std=c++11

str.mm:7:3: warning: ’NSMutableString’ may not respond to

’count’

[foo count];

^

Author's Note
Comment
If you are writing Objective-C++, this integrates nicely with the auto keyword, which means 'variable of the type of the initialisation expression'. Without the inference, the return type would be id, so this would not raise an error. Now it does.

Introduction Data Hiding Inference Pretending to be JavaScript ARC Message Sending

Blocks As Methods

• Methods are functions that take two hidden arguments: self

and _cmd

• Block functions take one hidden argument: the block pointer

• How to map one to the other?

Author's Note
Comment
This was added to the Apple implementation a while ago, but not really documented. As soon as we had blocks, we wanted to be able to use them for methods. Unfortunately, this was not possible because, unlike GCC nested functions, they had a different calling convention.

Introduction Data Hiding Inference Pretending to be JavaScript ARC Message Sending

Blocks as IMPs

�
[obj doStuff: arg1 with: arg2];

// Calls:

imp(obj , @selector(doStuff:with:), arg1 , arg2); 	� ��
some_block_t block = ^(id , id , id) {...};

block(obj , arg1 , arg2);

// Calls:

block ->invoke(block , obj , arg1 , arg2); 	� �
Block function as IMP needs the arguments rearranged!

Author's Note
Comment
You can almost just use the block as an IMP, but the receiver would be wrong, so every reference to a bound variable would break.

Introduction Data Hiding Inference Pretending to be JavaScript ARC Message Sending

A New Runtime Function

�
__block int b = 0;

void* blk = ^(id self , int a) {

b += a;

return b; };

// Apple provide this function:

IMP imp = imp_implementationWithBlock(blk);

// This is a GNUstep extension:

char *type = block_copyIMPTypeEncoding_np(blk);

class_addMethod ((objc_getMetaClass("Foo")),

@selector(count :), imp , type);

free(type)

assert (2 == [Foo count: 2]);

assert (4 == [Foo count: 2]); 	� �

Author's Note
Comment
This Just Worksâ—¢. The block is called and its bound variables work correctly as a result of the message.

Introduction Data Hiding Inference Pretending to be JavaScript ARC Message Sending

How It Works

• imp_implementationWithBlock() returns a copy of a
trampoline

• Trampoline stores the block and the invoke pointer just before
the start of the function

• Moves argument 0 (self) over argument 1 _cmd.

• Copies block pointer over argument 0

• Jumps to block function

• Currently implemented for x86, x86-64 and ARM

Author's Note
Comment
This needs a little trampoline, which must be written in assembly because C does not provide any mechanism for doing a tail call that preserves an arbitrary set of arguments.

Introduction Data Hiding Inference Pretending to be JavaScript ARC Message Sending

Differences from Apple

• block_copyIMPTypeEncoding_np() works out the type of the
method automatically, no need for explicit type encodings in
source code.

• Block trampolines are dynamically allocated (and WˆX safe!),
no hard-coded limits on the number.

• One more thing...

Author's Note
Comment
When I started playing with this, I found the requirement to explicitly state the type encoding for the method was frustrating. It's particularly stupid, because blocks store their type encoding in the descriptor. We can avoid this by simply extracting the block descriptor, performing a simple rewrite changing the block and object parameters to an object and selector, and return the result.

Introduction Data Hiding Inference Pretending to be JavaScript ARC Message Sending

Prototype-style OO in Objective-C

�
id obj = [SomeClass new];

id obj1 = [SomeClass new];;

object_addMethod_np(obj , @selector(count:), imp ,

type);

[obj count: 2];

// This will throw an exception

// [obj1 count: 2];

obj1 = object_clone_np(obj);

// This will work

[obj1 count: 2]; 	� �
Exposed via a category on NSObject in EtoileFoundation, used in
LanguageKit.

Author's Note
Comment
This does the same sort of hidden class transform as the Self and V8 VMs, creating a hidden class for the object. It's pretty heavyweight, but can be quite useful. You could use this to implement a very fast KVO, for example.

Introduction Data Hiding Inference Pretending to be JavaScript ARC Message Sending

Associated References

• objc_setAssociatedObject() - associate one object with
another

• objc_getAssociatedObject() - return the old object

• Effectively adding slots to objects.

Author's Note
Comment
Apple introduced these with 10.6 - it took us a little while to catch up. Now you can attach an object to other objects and it just works.

Introduction Data Hiding Inference Pretending to be JavaScript ARC Message Sending

Automatic Reference Counting

• More than just automatically inserting retain / release.

• Better memory model

• Explicit ownership qualifiers

• Denser code, better performance

• ABI compatible: ARC and non-ARC code can be mixed in the
same binary (but not in the same compilation unit)

Author's Note
Comment
Automatic reference counting is an unfortunate name, because the automation of the reference counting is probably the least interesting part. The better memory model and the ability for the compiler to optimise reference counting are a lot more interesting.

Introduction Data Hiding Inference Pretending to be JavaScript ARC Message Sending

Autorelease Pools

• Explicit references to NSAutoreleasePool are not allowed in
ARC mode.

• @autoreleasepool defines an autorelease pool scope
• Calls objc_autoreleasePoolPush() and
objc_autoreleasePoolPop()

• These return / take void*

• Creating and destroying an autorelease pool just places a
marker, does not have to allocate memory or create a new
object�

id foo;

@autoreleasepool {

foo = createsLoadsOfTemporaries ();

} 	� �

Author's Note
Comment
An autorelease pool is a nested set of objects, which means it can be implemented as just a list. In the runtime, we just allocate a linked list of page-sized things. Pushing an autorelease pool just means returning the current insert point. Popping means releasing everything until we get to the specified insert point.

Introduction Data Hiding Inference Pretending to be JavaScript ARC Message Sending

Explicit Ownership Qualifiers

• __strong - Always holds an owning reference. Default for
globals and ivars.

• __autoreleasing - Holds an autoreleased variable. Default for
locals.

• __unsafe_unretained - Stores a pointer to an object or a
nonsense value. User is responsible for ensuring it is valid.

• __weak - Stores a zeroing weak reference. Will be set to 0
when the object is deallocated.

Author's Note
Comment
We now have explicit ownership qualifiers for Objective-C pointers, showing if they are meant to store strong (retained) values, if they're temporary pointers to things that are autoreleased, if they're pointers to things that we are manually tracking, and now we also have zeroing weak pointers. We had weak pointers in GC mode already, but now we have then in reference counted code. Unlike GC mode, we can even use them for stack variables.

Introduction Data Hiding Inference Pretending to be JavaScript ARC Message Sending

Weak References Are Deterministic

�
#import <Cocoa/Cocoa.h>

int main(void)

{

__weak id foo;

@autoreleasepool {

id bar = [NSObject new];

foo = bar;

}

printf("Weak reference: %p\n", foo);

return 0;

} 	� �
$./a.out

Weak reference: 0

Author's Note
Comment
This will always give the same output. Unlike GC mode, where this may return a valid pointer or 0, depending on when / if the GC ran.

Introduction Data Hiding Inference Pretending to be JavaScript ARC Message Sending

Bridged Casts

�
id foo = bar;

void *ptr = foo; // <- This will error in ARC

mode 	� �
• Object pointers are no just longer C pointers.
• Object pointers are not allowed in structures (except in C++).
• Casting from an object pointer to a C pointer requires a

bridging cast.
• (__bridge void*)obj and (__bridge id)ptr do no ownership

transfer.
• (__bridge_retained void*)obj gives a C pointer that is an

owning reference.
• (__bridge_transfer id)ptr transfers ownership to an object

pointer.

Author's Note
Comment
This is probably the best bit of ARC: it's now easy to track what happens when you store object pointers in C code. You must be explicit in the cast about whether the object is owned or not by the C pointer.

Introduction Data Hiding Inference Pretending to be JavaScript ARC Message Sending

Example

�
struct {

void *ptr;

// other stuff

} foo;

// Note: Not thread -safe.

void store(id obj) {

foo.ptr = (__bridge_retained void*)obj;

}

id load(id obj) {

id tmp = (__bridge_transfers id)foo.ptr;

foo.ptr = NULL;

return tmp;

} 	� �

Author's Note
Comment
This is roughly equivalent of retaining the object when you do the assignment and autoreleasing it after. It is the compiler's job to insert these calls though, and to balance them and to. You shouldn't actually think of it like that though. Think of a bridged cast as removing an object from ARC's responsibility and returning it.

Introduction Data Hiding Inference Pretending to be JavaScript ARC Message Sending

Automatic Dealloc

• ARC code may not explicitly send -dealloc messages.

• Classes compiled in ARC mode automatically have a
.cxx_destruct method added that frees ivars.

• -dealloc is only for cleanup of other things (e.g. closing file
descriptors).

• Call to [super dealloc] is implicit.

• With synthesized properties, you get accessors and dealloc for
free.

Author's Note
Comment
Combined with synthesized properties, you can have simple objects that don't have any code at all. ARC will automatically clean up all object ivars for you, so you only need to worry about freeing C memory and closing things like file descriptors in -dealloc.

Introduction Data Hiding Inference Pretending to be JavaScript ARC Message Sending

Performance

• Retain and release inserted by ARC are calls to
objc_retain() / objc_release().

• Smaller code and faster than a message send.

• Optimisers will elide redundant retain / release operations

• Less reason to use autoreleasing constructors: objects created
with +new / +alloc will be automatically released when they
go out of scope.

Author's Note
Comment
One of the main reasons to use autoreleasing constructors is that you are too lazy to work out where the -release call should go. With ARC, it goes nowhere - the compiler inserts it for you - so there's very little reason to use them.

Introduction Data Hiding Inference Pretending to be JavaScript ARC Message Sending

Autoreleasing Performance

• A common idiom is to retain and then autorelease an object
then return it.

• This can result in it living in the autorelease pool for a long
time.

• ARC has a mechanism for (roughly speaking) popping the top
object from the autorelease pool

• This un-autorelease means that the object is removed from
the pool

• Cheap autorelease pool scopes can mean a lot fewer
temporaries

Author's Note
Comment
The ability to un-autorelease things means that you can shorten the lifetime of an object by assigning a returned autoreleased object to a strong temporary.

Introduction Data Hiding Inference Pretending to be JavaScript ARC Message Sending

ARC vs Legacy

• Loop calling accessor

• Accessor returns retained + autoreleased object

Legacy

ARC

ARC version is more than twice as fast!

Introduction Data Hiding Inference Pretending to be JavaScript ARC Message Sending

Objective-C++ and ARC

• Objective-C objects are non-POD types
• Storing them in C++ containers Just WorksTM�

template <typename X> struct equal {

bool operator ()(const X a, const X b) const {

return (a == b) || [a isEqual: b];

} };

template <typename X> struct hash {

size_t operator ()(const X s1) const {

return (size_t)[s1 hash];

} };

// NSMutableArray equivalent:

std::vector <id > array;

// Dictionary from strings to weak objects:

std:: unordered_map <NSString*, __weak id ,

hash <NSString*>, equal <NSString*> > d; 	� �

Author's Note
Comment
Prior to ARC, memory management with Objective-C++ meant wrapping Objective-C object pointers in crazy templates. Now it is trivial. It's actually easier to use Objective-C objects in C++ containers than it is to use C++ objects in C++ containers...

Introduction Data Hiding Inference Pretending to be JavaScript ARC Message Sending

The ARC Migration Tool

• Compile with -ccc-arcmt-check to flag things that will need
manually changing for ARC code.

• Fix them.

• Compile with -ccc-arcmt-modify to rewrite the file to using
ARC.

• Profit (from fewer bugs and simpler code)

• Think about object ownership, not about memory
management.

Author's Note
Comment
The ARC Migration Tool does most of the effort of migrating to ARC for you. Often you don't need to do anything. Sometimes you just need to add a few explicit qualifiers to clarify what is actually meant. Then the migration tool can do the rewriting automatically.

Introduction Data Hiding Inference Pretending to be JavaScript ARC Message Sending

Faster Message Sending

• Implemented objc_msgSend() for x86, x86-64, ARM.

• Performance almost as fast as cached call.

• Varies between CPUs, generally now message send cost is less
than double the cost of a function call.

• Better than the theoretical best speed with the classical GNU
message lookup.

• Microbenchmark shows same speed as OS X, where OS X is
using its fast, cached code path.

• 10% reduction in total code size for GNUstep-base.

• Enable with -fno-objc-legacy-dispatch

Author's Note
Comment
I put this off for ages, because it needs doing for every platform, but it turned out to be not too hard (although the x86-64 part will need modifying for the Win64 calling convention). It's a big speed win, even with the other flexibility that we have. The old APIs aren't going away, but this one is a nice bonus.

Introduction Data Hiding Inference Pretending to be JavaScript ARC Message Sending

Message Sending Speeds

Message sending loop on an 800MHz ARM Cortex A8

0 1 2 3 4 5 6
seconds

IMP call

instance message

auto-cached

objc msgSend()

class message

Author's Note
Comment
The ARM chip has a few advantages for benchmarking: function calls are cheap so the difference between a function call and a message send is more noticeable. It doesn't do hyperthreading or frequency scaling, so benchmark results are fairly deterministic.

Introduction Data Hiding Inference Pretending to be JavaScript ARC Message Sending

Small Objects

• Idea from Smalltalk (also in OS X 10.7), which Smalltalk stole
from Lisp in the ’70s.

• Small objects hidden in pointers.

• 32-bit architectures: 1 bit for small int flag.

• 64-bit architectures: 7 small object classes.

• Saves memory allocation for lots of short-lived temporaries.

Author's Note
Comment
This idea is really old. It's not been used in Objective-C much before because we can use ints and doubles directly. The main motivation for this was for Pragmatic Smalltalk - the code was mostly implemented there already and is now sunk into the runtime / GNUstep Base. We can't stick them in collections though. This makes things like integer-indexed NSDictionaries quite cheap.

Introduction Data Hiding Inference Pretending to be JavaScript ARC Message Sending

Small Object Kinds

All can be used as ‘normal’ NSNumber or NSStrings:

• NSSmallInt - 31-bit / 61-bit signed integer.

• NSSmallExtendingDouble - double with last 1 bit of mantissa
repeated.

• NSSmallRepeatingDouble - double with last 2 bits of mantissa
repeated.

• GSTinyString - (up to) 7 ASCII characters in a string.

GNUstep-base allocates over 20 GSTinyString instances before
main()!

Author's Note
Comment
The short strings are used a lot when constructing paths. If you're manipulating JSON, or large plists then these can save a surprisingly large amount of memory.

Introduction Data Hiding Inference Pretending to be JavaScript ARC Message Sending

And One More Thing...�
@interface GSSomeClass

+ (void)foo;

@end

#ifndef __APPLE__

@compatibility_alias NSSomeClass GSSomeClass;

#endif

@implementation GSSomeClass

+ (void)foo { NSLog(@"Foo!"); }

@end

...

// This works fine

[NSSomeClass foo];

// WTF? This doesn’t?

[NSClassFromString(@"NSSomeClass") foo]; 	� �

Introduction Data Hiding Inference Pretending to be JavaScript ARC Message Sending

And One More Thing...

�
@interface GSSomeClass

+ (void)foo;

@end

#ifndef __APPLE__

@compatibility_alias NSSomeClass GSSomeClass;

#endif

@implementation GSSomeClass

+ (void)foo { NSLog(@"Foo!"); }

@end

...

// This works fine

[NSSomeClass foo];

// So does this! Thanks Niels!

[NSClassFromString(@"NSSomeClass") foo]; 	� �

Author's Note
Comment
Niels Grewe added alias support in the runtime and tweaked clang to automatically use it. Now class aliases defined like this Just Work at both run and compile time.

Introduction Data Hiding Inference Pretending to be JavaScript ARC Message Sending

And More Platforms!

Author's Note
Comment
Objective-C hello world, using clang 3.0 and the GNUstep Objective-C Runtime 1.6 on QNX Neutrino.

Introduction Data Hiding Inference Pretending to be JavaScript ARC Message Sending

Questions?

	Introduction
	Apple's version

	Data Hiding
	Inference
	Pretending to be JavaScript
	ARC
	Memory Management
	Interfacing with C
	Performance
	Objective-C++
	Migration

	Message Sending
	Small Objects

