ASEBA

Open-Source Low-Level Robot Programming

Stéphane Magnenat *

stephane at magnenat.net

Philippe Rétornaz 2

L Autonomous Systems Lab
ETH Zirich

2Mobots group - Laboratory of robotics Systems
EPFL

February 5, 2012

46

http://stephane.magnenat.net
http://asl.ethz.ch
http://www.ethz.ch
http://mobots.epfl.ch
http://www.epfl.ch

Outline

Motivation

Current Use

Technical Description

Performances

Wrap-up

2

46

Motivation

Outline

46

Motivation: Multi-Microcontrollers Robots

Modern integrated mobile robots
have
> lots of degrees of freedom

» many and various sensors

Their computing infrastructure
consists of

> a main processor running Linux
(ex. Gumstix)
» multiple microcontrollers

» a common communication bus
(ex. 12C or CAN)

4/46

Motivation: Usual Approach is Centralized Polling...

l microcontroller lj

main .
ORI l microcontroller 2]
l microcontroller 3]

bu5||‘ii’|||||||||||
activity '

cycle cycle
- -

i B0]

-
L

main processor
continuously
> read sensors
> process data

» set actuators

microcontrollers

» interface to
physical devices

bus

» [2C

46

Motivation: ...but Distributed Events are Better!

‘ :{ microcontroller 1) main processor
main | . » react to events
> microcontroller 2
processor < » send events
l microcontroller 3] .
microcontrollers

» interface to

ggtsivity @ _ I - physical devices
// * T~ _ > preprocess data
‘/// \\\\‘~\\\ » send events
’_‘ > react to events
_ |
bus
» CAN

Motivation: An Example of Distributed Events

- B S

time

<

7/46

Motivation: An Example of Distributed Events

— ()
e

no obstacle

time

<

8/46

Motivation: An Example of Distributed Events

— ()
e

no obstacle

obstacle detected

YYVYY

time

<

9/46

Motivation: An Example of Distributed Events

o

A

N

time

—E=
el

no obstacle

obstacle detected

\AAAAA)

<

no obstacle

10/46

Motivation: How to Implement Distributed Events?

» Contrary to centralized polling, with events the emission
policy must be distributed as well.

» Microcontrollers must take decisions about what event to
send when, and how to link incoming events to actuators.

» Therefore they must be programmable, but flashing is slow.

» A virtual machine is the solution...

> And so Aseba was born!

11 /46

Motivation: How to Implement Distributed Events?

» Contrary to centralized polling, with events the emission
policy must be distributed as well.

» Microcontrollers must take decisions about what event to
send when, and how to link incoming events to actuators.

» Therefore they must be programmable, but flashing is slow.
> A virtual machine is the solution...

» And so Aseba was born!

» Aseba stands for Actuator and Sensor Event-Based
Architecture.

> Aseba puts virtual machines inside microcontrollers; enabling
their programming through a user-friendly language and IDE.

12 /46

Outline

Current Use

13 /46

Swarm Robotics: hand-bot

6 Aseba VM, real-time unwind control, grasping,
and state machines implemented in Aseba

14 /46

Swarm Robotics: hand-bot

hand-bot video at
http://www.youtube.com/watch?v=92bLgE6D02g

In this video, the hand-bot climbs a shelf and retrieves a book
solely using Aseba.

15 /46

http://www.youtube.com/watch?v=92bLgE6DO2g

Autonomous Construction: Lonelybuilder

5 Aseba VM, state machines coded in Aseba

localisation, mapping, planning running on Linux ARM
16 /46

Autonomous Construction: Lonelybuilder

Lonelybuilder video at
http://www.youtube.com/watch?v=h865RHbTIMs

In this video, Lonelybuilder constructs a tower by manipulating
cubes. The manipulation state machines are implemented with
Aseba.

17 /46

http://www.youtube.com/watch?v=h865RHbT9Ms

v

v

v

Brick for Building Robot: Smartrob

2 motor and 8 servo drivers
8 infrared-sensor drivers
additional I/O and A/D
CAN bus, stackable

v

v

v

v

single 3 to 25V input

shipped with Aseba
ROS and D-Bus integration

soon available for buying

18 /46

Educational Robotics: Thymio Il

Full-featured open-hardware programmable mobile robot for
100 CHF (~ 80€), see http://aseba.wikidot.com/en:thymio

19/46

http://aseba.wikidot.com/en:thymio

Educational Robotics: Thymio Il

20/46

Educational Robotics: Thymio Il

s “
w e oo [aft I !
G FGECIRP VREE ANV 4 z
VMIORPI3/C2INB/AN2ICN4RB2 -
vearvoncoRE T
[rsrpp——n 4 rarpsra INBANA R
TGS NGk
oo FGEDRCVRFTANT NN [
oo frifisen i
1 KR AN (2
oo TS PMA AN CVREF O RBID [
N Do AT N RDI | [
e b CISRPAL AN\ RBIY [
b e RE D AN RETOCN Rb1: [

‘Therm. NTC Sensor

iz
ok

Rt

Lrm
NCPISKHIOSFORC

36 kHz IR receiver

S

a6kt

o |2

IR Recsier

Rio

Er
Bt

o
00K

S Ce—
Mo 3
TOTOR P

S

oscucLieNRen

SOSCICINDCNIRCTS

RPI37SOSCOCSINCTICKCNORCL3
COCLKOC

RP24VCPCONCNSURD!
DPHRPCONS|RD2
REZLPMAECNS2RDS
PAWRRP2S CNISRDY
PMRDRPICNISRDS
CAINBCNISRDG
RPUDPLNSDAT CNSIRDS
RPSSCLUPMCSICNSSRDI0
PLLPMCS] CNORDI L

VBUSSTVCMPSTLCNGSRRD
VCMPST2CNGORFL
RPIGUSBIDCNTIRES
PMARPIOSDAZCNITRFA
PMARRPITSCLLCNINRES PADOCNSSRED
PMASRE2L CINDCNARGS
RPSPMAYCINCONDRGT
PUASRPIO CANDCNIORGS
RPIIPMALCINCONIIRG)

PUDGSCLYCNGYRES 4

XL LEEY)

FTTETTYN

R viotoRt iz

»

Project thymio2-main. PrjPCB o | ettt
Pat Thymio? LECH .

PCB principal b ctvims Lavsowne
T mierocomvleSchboc T2 w0 | Laboratoire de Systémes Robootigues

21 /46

Educational Robotics: Thymio Il

5 capacitive touch
buttons with activity display

Li-Po battery level and ON-OFF function

pencil support

speaker
USB connection
(programming and recharging)
memory card slot
hook for trailer
2 proximity sensors
microphone

infrared remote control
receiver

3 axis accelerometer mechanic fixation

5 proximity sensors
(obstacle detection) 2 wheels with
speed control
2 ground sensors

(line following)
39 LED to visualize temperature sensor
sensors and interaction

reset button

22

46

Educational Robotics: Thymio Il

Enables children to discover programming with a mobile robot.

23 /46

Simulated Robotics: Challenge

beamer

arena
computer

child computer
development env.
+ local arena

child computer
development env.
+ local arena

child computer
development env.
+ local arena

child computer
development env.
+ local arena

Outline

Technical Description

25 /46

Technical Overview

Aseba:

>

allows fast prototyping of the behaviour of microcontrollers
connected through a network,

provides an IDE for edition, debugging and inspection of the
values of variables (including sensor and actuators),

compiles scripts into bytecode,
executes bytecode on microcontrollers in a virtual machine,
safe execution,

dynamic enumeration of microcontrollers’ variables, native
functions and events,

dynamic reprogramming of the microcontrollers,
asynchronous code execution upon events,

open source, LGPL.

26

46

Software Architecture

computer computer running Linux

desktop E central embedded 4[microcontroller

N
high-level control microcontroller
programs ' J

J

l--
o
[+ | P
(7]
o
=h
=
)
@
(72}
=
o
0
o
:Jﬂ
3.
3
o
(@)
o
3
S
o}
U J

optional optional

27 / 46

Microcontrollers

microcontroller

application
specific

program

28 /46

Virtual Machine

targets 16-bit microcontrollers and better,
stack based, 16-bit integers,

executes bytecode

(4-bit opcode, 12-bit payload + optional trailing 16-bit words)
~ 1000 lines of C, including debugging logic,

RAM: 22 bytes + user defined amount of bytecode, variable,
stack, and breakpoints.

flash: 7.5 kB flash (dsPIC30, e-puck),

no external library requirement, excepted the implementation
of bus communication.

29 /46

Language

Simple imperative scripting language, octave-like syntax.

>

>

>

blocks of code executed upon events,

16-bit integer variables and arrays,

common mathematical expressions and arrays access,
if and when conditionals,

while and for loops,

native functions for complex processing,

subroutines.

30

46

Studio (IDE)

Live Demonstration using Thymio Il

31/46

Outline

Performances

32/46

Evaluation Platform

Evaluation conducted using the marXbot base.

33

46

empty

Aseba vs Polling: Bus Bandwidth

data transmitted for 1 minute

1MB

100 kB

10 kB

1kB

100 B

i ©\/<
] 0[]

boxes
walls

empty boxes walls ' 10Hz 25Hz 67 Hz
event-based polling

34 /46

Aseba vs Polling: Bandwidth Use w.r.t. Location

I 100 bytes per second

35 /46

250 mm

—
150 mm/s

initially

<>
d

once stopped

Frequency

10

Frequency

30

20

20

10

polling 10 Hz

aliihl

I I B I
5 10 20 30
distance [mm]

polling 67 Hz

I I B I
5 10 20 30
distance [mm]

Frequency

Frequency

Aseba vs Polling: Latency

polling 25 Hz
o
(2]
o
N
o
-
o
I B T B
5 10 20 30
distance [mm]
event-based
o
(%2}
o
N
o
-
o

T T T 711
5 10 20 30
distance [mm]

36

46

Aseba vs Native

On a 40 MHz dsPIC:

» Ratio of about 70 dsPIC instructions for 1 Aseba instruction

v

Rate of 600’000 instructions per second

v

Event round trip lasts 25 us on idle VM

v

Native functions in DSP assembly

v

Native functions use dsPIC's DSP, event round trip for mean
of 100 values is 60 us, faster than bare C code

37 /46

Lessons Learnt on Performance

» Events save bandwidth compared to polling.
» Events allow for lower latencies than polling.

» Virtual machines are suitable for embedded, provided the
critical path is optimised.

38 /46

Outline

Wrap-up

39 /46

Future Directions

Improve IDE

> store program as abstract
syntax tree, textual surface
form for editor

» contextualised help/errors
> intelligent completion

> statistics and machine
learning for common
mistakes, automatic tutoring

Lower entry curve

> improve tutorial
» robotics course

» more translations

More platform support

>

>

>

new firmware for Thymio Il

affordable service robot
based on Smartrob

add your favourite platform!

On the long run

>

no more arithmetic/logic
operation in the VM, use
only native functions

complete type system
more proving in the compiler
JIT on some platforms

use standard language?

40 /46

Take-Home Message

The combination of VM and custom-tailored IDE enables efficient
embedded development, in particular for robotic applications.

Aseba is a mature and robust implementation of this idea. Yet
there is much room for improvement and innovative ideas.

You are welcome to join us in this endeavour!

41 /46

Thank you

Thank you for your attention, your questions are welcome.

ASEBA & Robots

Welcome to Aseba

Contact us
Contribute
Thymio IT

Philosophy.

The Aseba community awaits you: http://aseba.wikidot.com

Thanks to: Michael Bonani, Florian Vaussard, Fanny Riedo, Valentin
Longchamp, Basilio Noris, Sandra Moser and Francesco Mondada

42 /46

http://aseba.wikidot.com

Program Memory Layout

addresses (in 16-bit words) content

bytecodeSize —1
ytecodesize unused bytecode

evLastAddr bytecode for last managed event

ovOAddr bytecode for first managed event
evVectSize —1 evLastAddr

evVectSize —2 evLastId

0x0002 evOAddr

0x0001 ev0Id

0x0000 evVectSize

43 /46

Data Memory Layout

addresses (in 16-bit words)

content

variablesSize —1

exportedVarsLength

0x0000

temporary variables to pass
constants to native calls

unused variables

user-defined variables

exported variables

44 /46

Types of Bytecodes - 1/2

name w. function

stop 1 stop execution

small immediate 1 push a constant onto the stack

large immediate 2 push a constant onto the stack

load 1 push data from memory onto the stack

store 1 pop data from the stack into the mem-
ory

load indirect 2 push data from memory onto the stack
using an offset from the stack

store indirect 2 pop data from the stack into the mem-
ory using an offset from the stack

unary arithmetic 1 unary arithmetic operation on the stack

binary arithmetic 1 binary arithmetic operation on the

stack

45 /46

Types of Bytecodes - 2/2

name w.c. function

jump 1 jump to another execution address

conditional branch 2 check a condition on the stack and
jump depending on the result

emit 3 send an event

native call 1 call a native function

sub call 1 jump into a subroutine, store return
address on the stack

sub ret 1 return from a subroutine, using return

address from the stack

46

46

	Motivation
	Current Use
	Technical Description
	Performances
	Wrap-up

