

Freedreno Update
FOSDEM 2013

Freenode: #freedreno
Web: http://freedreno.github.com/

Motivation: Lack of opensrc gfx on ARM
● Open Source is about freedom

– If you have the src and the will, you have a way
● New widget, new feature, new distro...

● For modern UI the GPU becomes more important

– If you don't have the src, then you are limited by the blob
● Android is dominant because of the blob

– Gives SoC vendors a single platform to support

– Doesn't really care that platform drivers work in a clean/sane way or
reusability outside of android

– Either use android or unaccelerated
● As a result → hacks

– Boot to Gecko using android HALs

– libhybris – dynamic loader hacks to reuse blobs

– But will just be all sorts of glue / duct tape
● But lima/mali gave some hope that things can change

History
● 2d – z180

– Started working on intercepting/parsing 2d cmds in march
2012

– Basic EXA (fill/solid/composite) working in Apr

– After that, mostly sidetracked on 3d

– Batching working in Oct

– Still a bit in need of some love and debugging
● 3d – a220

– Intercepting and initial parsing 3d cmds in Apr

– First renders with fdre end of Jun
● Using hard-coded, pre-compiled shaders

– Start on shader disassembler in early Jul

– Shader assembler for fdre and of Jul

– Gallium driver started Nov

Adreno Overview
● 3d core – a2xx, a3xx

– Origin: ATI/AMD Imageon
● Similar heritage as r300/r600

– Psuedo-TBDR
● Hidden surface removal
● Memory bandwidth reduction in common cases
● GMEM macro-tile: 256KiB or 512KiB vs 16x16 or 32x32
● Starting with a330, OCMEM (on-chip mem) instead of GMEM..

seems to be shared w/ other accelerators like video codecs
– I suspect similar to xbox360 / Xenos

● 2d core – z1xx

– Origin: bitboys (I think)

– OpenVG core... but focusing on what is needed for EXA

– Not really any similarity to 3d core, different CP format, no GMEM, etc

– Different adreno versions have zero, one, or two 2d cores

Tools of the Trade...
● libwrap.so – intercept ioctls, dump gpu buffers and cmdstream

● redump – cmdstream parser / diff-tool for 2d

● cffdump – cmdstream parser for 3d

– Follows gpu ptrs (IB's, vertices, consts)

– Shader disassembler

– Some register bitfield and PM4 opc parsing

● pgmdump

– Shader program binaries dumped via GL_OES_get_program_binary extension
implemented in blob driver

– Shader disassembler

– Used in shader ISA r/e to compare output of similar shaders, to find instruction opcodes,
etc

● fdre

– Simple GL-like API

– an easy way to exercise the GPU

– Shader assembler

– Depth/stencil/textures working

– Used before gallium driver, and now to have simple way to experiment and test theories

●

Tools of the Trade...

3d: Tiling
● Color buffer + Depth + Z must fit in GMEM

– Side by side

– 16bit Z or 24bit Z + 8bit stencil (optional)
● Rendering done in passes

– GMEM is 512KiB on a220, 256KiB on a200

– Without using hw binning/tiling:
● Set scissor, IB to buffer w/ draw cmds

– With hw binning (I think, not implemented yet):
● Simple vertex shader pass to figure out which

vertices in which bin (to avoid running VS many
times)

3d: commandstream
● Command Parser

– Same as r300/r600 – PM4 type0/3
● Registers

– Few similar registers (but different offset)

– Mostly different
● Opcodes – different

● “amd-gpu” kernel driver \o/

– Recently found kernel driver from freescale kernel

– Has pretty much all regs/bitfields as of a200

– Opcode names/id's but not format

3d: commandstream

clear/draw cmds tile0 tile1tile0 tileN...

IB – indirect branch

GPU begins executing from here
● Rendering within each tile works like traditional IMR

● The per-tile commands:

– “restore” (optional) – mem2gmem() – transfer current contents from system memory to GMEM (tile
buffer, color + depth/scissor)

– Setup window-offset and screen scissor

– IB to clear/draw cmds

– “resolve” – gmem2mem() – transfer GMEM contents back to system memory

● Notes:

– Not yet using “hw binning” - looks like that should reduce vertex processing load for vertices not
related to the current tile

– The order of cmdstream building is not the same as order that GPU executes, and restore/resolve
steps dirty some state used in clear/draw calls, so some care must be taken

3d: ISA
● Unified shader ISA

● Separation of CF and ALU/FETCH

– 48bit CF instructions in pairs

● Control flow instructions reference offset of ALU instructions
in 3*dword (96bit)

– 96bit ALU instructions

● Co-dispatch of vec4+scalar

3d: ISA
uniform sampler2D g_NormalMap;
uniform float foo;
varying vec2 vTexCoord0;

void main()
{
 vec3 vNormal = vec3(2.0, 2.0, 0.0) * texture2D(g_NormalMap, vTexCoord0).xyz;
 vNormal.z = foo * -dot(vNormal, vNormal);
 gl_FragColor = vec4(vNormal, 1.0);
}

EXEC ADDR(0x2) CNT(0x3)
 FETCH: SAMPLE R0.xyz_ = R0.xyx CONST(0) LOCATION(CENTER)
 (S)ALU: MULv R0.xyz_ = R0, C1.xxzw
 ALU: DOT3v R1.x___ = R0, R0
ALLOC PARAM/PIXEL SIZE(0x0)
EXEC_END ADDR(0x5) CNT(0x2)
 ALU: MAXv export0.xy_w = R0, R0
 MAXs export0.___w = R0
 ALU: MULv export0.__z_ = -R1.xyxw, C0.xyxw
NOP

EXEC ALLOC

EXEC_END NOP

FETCH

MULv

DOT3v

MAXv + MAXs

MULv

Status
● Hardware:

– So far, just a220/z180

– Snapdragon S3 (APQ8060, MSM8260, MSM8660)
● eg. HP touchpad, dragonboard

– a200/z160 looks like it should be pretty similar, not sure about others

– nexux-4 with a320 on order, so we shall soon see :-)
● EXA/2d support:

– Basics work, some bugs

– Composite blits w/ mask surface not implemented yet

– Enough registers understood, so just need time to implement
● Gallium/3d support:

– Basics work, some bugs
● >50% of glmark2, xbmc, compiz, q3a

– Still needed
● cmdstream: MSAA, mipmap textures
● compiler: loops, optimizing
● hw binning

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12

