
Hardening MySQL
Maciej Dobrzański

maciek at psce.com
@MushuPL

http://www.psce.com/

In this presentation

• Database security

• Security features in MySQL

• The ugly truth

• Improving security

DATABASE SECURITY

Database security

• Why is it important?

• What is at stake?
– Availability

– Confidentiality

– Privacy

– Integrity

SECURITY FEATURES IN MYSQL

Security features in MySQL

• Users & Privileges
– Define who can access database.

– Define what users can do when inside database.

– No support for user groups

• Group-like mappings available through some plugins

Security features in MySQL

• Connection encryption
– Uses SSL

– Requires keys & certificates for both server and clients

– Not as straightforward to set up as it may seem.

– Debugging problems can be hell.

– OpenSSL vs yaSSL – a problem with SSL library.

Security features in MySQL

• Certificate-based authentication
– Not really a separate feature.

– Enables two-factor authentication.

Security features in MySQL

• Logs
– Essential.

– Two main types – general log, error log.

– Neither one is flexible enough to serve the purpose well.

– Make sure the files are not readable by everyone.

Security features in MySQL

• Audit plugins
– Available in MySQL 5.5+.

– Handle database events they way you want it.

– Require development effort.

Security features in MySQL

• Host bans
– MySQL blocks hosts based on unsuccessful authentication.

– Threshold set in max_connect_errors.

– Zero insight into what is on the list.

– FLUSH HOSTS clears everything.

Security features in MySQL

• Cryptographic functions
– AES_ENCRYPT(), AES_DESCRYPT(), DES_ENCRYPT(), DES_DECRYPT()…

– Encrypting is not safe as secrets are logged by MySQL in open text:

• Process list, InnoDB status, general log, error log, binary log, slow log.

– Avoid doing encryption in MySQL.

THE UGLY TRUTH

The ugly truth

• MySQL is not secure out of the box!

• Many users just leave it at that.

MAKING MYSQL MORE SECURE

Making MySQL more secure

• Users
– Users with empty passwords are created during installation.

• Including privileged root account!

– Set root’s password and drop other user entries.

– Use good passwords.

– Restrict users to connect from specific addresses only.

• GRANT … TO ‘zabbix’@’10.0.254.17’ …

• GRANT … TO ‘api’@’10.0.5.%’ …

Making MySQL more secure

• MySQL ships with a script to fix some of those problems.

mysql_secure_installation

Set root password? [Y/n] Y

New password:

Re-enter new password:

Password updated successfully!

Reloading privilege tables..

 ... Success!

Remove anonymous users? [Y/n] Y

 ... Success!

Disallow root login remotely? [Y/n] n

 ... skipping.

Remove test database and access to it? [Y/n] Y

 - Dropping test database...

 ... Success!

 - Removing privileges on test database...

 ... Success!

Reload privilege tables now? [Y/n] Y

 ... Success!

Making MySQL more secure

• Privileges
– Never ever give users global privileges, except:

• root, backup user, monitoring user, replication user

• There is a really good justification to do it.

– Take extra caution when granting SUPER or FILE privs

• SUPER can modify runtime configuration and become other users.

• FILE allows reading or writing as MySQL process

– User can access file system.

– User can read database’s own files and create new ones in data directory.

– Set secure_file_priv.

Making MySQL more secure

• My first idea for some fun with FILE privilege:
SELECT

x'fe62696e9a4b08510f01000000670000006b00000001000400352e352e32392d6c6f670000000

000

0013380d0008001200040404041200005400041a080000000808080200b64b085102010000008f0

00000fa000000000001000000000000000000002a00000000000001000000000000000006037374

64042100210008000b04726f6f74096c6f63616c686f7374004752414e5420414c4c20505249564

94c45474553204f4e202a2e2a20544f20276d616c6c6f72792740272527204944454e5449464945

4420425920276d616c6c6f727927'

INTO OUTFILE '/var/lib/mysql/test-centos-bin.000003' FIELDS ESCAPED BY '';

• MySQL sets internal references between consecutive logs
– This won’t really work unless it is applied manually…

– ..which could happen when doing point-in-time backup restore.

Making MySQL more secure

• What I thought about doing next?

 mysql> SELECT 'TYPE=VIEW

 '> query=select `mysql`.`user`.`User` AS

`User`,`mysql`.`user`.`Host` AS `Host` from `mysql`.`user`

 '> definer_user=root

 '> definer_host=localhost

 '> suid=1

 […]

 '> '

 > INTO OUTFILE '/var/lib/mysql/test/peekaboo.frm'

 > FIELDS ESCAPED BY '' LINES TERMINATED BY '';

Query OK, 1 row affected (0.00 sec)

Making MySQL more secure

• The outcome

 mysql> SELECT * FROM mysql.user WHERE User = 'root';

ERROR 1142 (42000): SELECT command denied to user 'mallory'@'localhost' for table

'user‘

mysql> SELECT * FROM peekaboo WHERE User = 'root';

+------+-------------+

| User | Host |

+------+-------------+

| root | 127.0.0.1 |

| root | ::1 |

| root | localhost |

| root | test-centos |

+------+-------------+

4 rows in set (0.00 sec)

Making MySQL more secure

• Exposure
– By default MySQL listens on all network interfaces.

• What if server is plugged into the Internet?

• Anyone can attempt to connect.

– Avoid using public interface.

• Disable networking if not used with skip-networking option.

• Use bind-address.

Making MySQL more secure

• Logs
– Use general log for a detailed record of users activity.

– Error log can be used to catch failed authentication attempts.

• Disabled by default!

• Set log_warnings = 2

• Trigger notifications if there are more than a few per day.

Making MySQL more secure

• Connection encryption
– Everything flows over network in open text.

– Not active out of the box.

• Needs certificates

– free self-signed ones are usually good too!

• Enabled with these options: ssl-ca, ssl-cert, ssl-key

• Clients have to ask for encryption!

– User access restrictions based on SSL

• GRANT … FOR ‘sso’@’10.0.5.%’ … REQUIRE SSL

• GRANT … FOR ‘sso’@’10.0.5.%’ … REQUIRE X509

• GRANT … FOR ‘sso’@’10.0.5.%’ … REQUIRE [ISSUER|SUBJECT]
'/C=PL/L=Krakow/O=PSCE/CN=Single Sign-On Service‘

Making MySQL more secure

• Anyone between a client and MySQL server may see this:

tcpdump -s 0 -l -w - port 3306 | strings

tcpdump: listening on br0, link-type EN10MB (Ethernet), capture size 65535 bytes

5.5.29-log

Ild2j@?\

1|@kw6C2mP+#

mysql_native_password

4@5@

root

mysql_native_password

Y@7@

select @@version_comment limit 1

@@version_comment

MySQL Community Server (GPL)

4@8@

U@9@

SELECT 'Why can you see me?'

Why can you see me?

4@:@

Making MySQL more secure

• Performance with and without SSL

Are we happy now?

• MySQL has many bugs.

• Some of them are security vulnerabilities.
– Local, remote.

– Authenticated, unauthenticated.

• Database should also be protected externally.

CREATING A FORCE FIELD

Creating a force field

• Firewall
– Ability to connect to MySQL port creates opportunity.

– Attacks may come from inside and outside!

• Another server was hacked.

• Curious employee.

– Always keep database behind a firewall!

– Linux iptables don’t affect performance.

• Connection tracking table tuning!

Creating a force field

• How enabling iptables impacts performance?

Creating a force field

• Middleware, reverse proxy
– Application firewall.

– May cut off many threats.

– Database server in its own private network

• No direct access to database.

– Access through proxy or simple middleware API

• MySQL Proxy + LUA script

• Custom REST based

• Commercial solutions

CONCLUSIONS

Conclusions

• Database security is important.
– Often ignored.

– Compliance with privacy laws.

• Decent set of security oriented features in MySQL.

• Some extra effort is required.

QUESTIONS?

Hardening MySQL
Maciej Dobrzański

maciek at psce.com
@MushuPL

http://www.psce.com/

