Improvements in the OpenBSD
IPsec stack

Mike Belopuhov <mikeb@openbsd.org>

AES-GCM: Overview

is a combined authentication/encryption
transformation

encrypts and generates MAC in one pass
128 bit MAC (not truncated)
AES-GMAC is an authentication only version

is essentially an AES-CTR + GHASH

AES-GCM: Why?

efficient use of an instruction pipeline
easily parallelized even on instruction level
unencumbered by patents

accelerated in hardware: 2+ Gbps per Intel core

AES-GCM: Use

MACsec, FC-SP, IPsec, SSH, TLS/SSL
NSA Suite B endorses it as a preferred mode of AES
Optional in the USGv6

NIST standard

AES-GCM: Operation

——— R ——
| Heuder | Seq. | Data |
=t —————t
AAD IV Plaintext
Vv
+ -+->| GCM Encryption |---
Ciphertext
Vv Vv Vv Vv
tm——————— fm————— tm——————— - t e

| Header | Seq. | Encrypfed DaTa | Tag |

—— et

AES-GCM: Operation

—— —— — — — — — —— - —

s SEe=—_ ——=
2 \ | IV | | Plaintext |
| AAD |-—>| GHASH | |
| e e 1 ! 1v
| Lner |
| ECK) |
v 5 || 3 v
----- -
| XOR [2=memt ie====3] XOR
g PO I e Y ""l'
| e
\ Vv
| Tag | | Ciphertext |

AES-GCM: Implementation in the kernel

Portable implementation written in C:

reuses existing AES-CTR code
AES_GMAC_{Init,Setkey Reinit,Update, Final}
swcr_authenc for combined transformations
a straightforward implementation

but slow

AMD64 specific written in asm and C:

based on the BSD licensed code by Intel
650-750 Mbps in the IPsec tunnel mode

AES-NI & CLMUL: SSE instructions

Available in the Intel Westmere and newer:

aeskeygenassist, aesimc - key expansion
aesenc, aesdec - encryption/decryption round
aesenclast, aesdeclast - final round

pcimulgdq - carry-less multiplication

AES-NI & CLMUL: FP in the kernel

normally not used

requires caller to save and restore fpu context
requires caller to setup a clean fpu context
cannot be safely used in the interrupt context
involuntary context switches should be avoided

fpu_kernel_enter()/fpu_kernel_exit()

AES-NI: The driver

/sys/arch/amd64/amdé4/aesni.c

wrapper around assembly

supports AES-CBC, AES-CTR, AES-GCM-16
accelerated CBC and CTR modes since OpenBSD 4.9
accelerated GCM mode since OpenBSD 5.1

support for ESN since OpenBSD 5.3

calls swer for HMAC

AES-NI: Future projects

implement AES-XTS (done by jsing@)
improve assembly
port to 1386

evaluate AVX

ESP

Transport Tunnel
e - o +
| IP IPx
o + b +
| ESP ESP
o -+ b —r
| TCP/UDP IP
e o+ i e +
| Payload TCP/UDP
e - pm e 1
| ICV | Payload
e - e -

ICV

+.h— I S S T S S — —+

32-bitT Security Parameters Index (SPI)

32-bit Sequence Number

Initialization vector (IV)

Padded payload

Integrity Check Value

—— — ——

-+

+

-+

-+

X ¥ ¥ ¥ ¥ ¥ %

Extended Sequence Numbers

packet structure is not changed
= only lower 32-bit part is transmitted
hew replay praTecTiﬂwchanism (RFC 43Q3)

rather complicated re-synchronization process
——— i
e,

———

First attempt at ESN in OpenBSD 5.2

only supported by the IKEv2 daemon iked(8)
works fine with AES-CBC against Strongswan
replay window size increased to 64 packets
artificial replay distance of 1000 packets

bug in the GCM support

AES-GCM and ESN in OpenBSD 5.3

RFC 4106 authors didn't pay attention to how ESN
handling was described in RFC 4303 for non-combined
modes:

hash higher 32-bit part *after® the rest of the packet

and specified ESN handling like this:

AES-GCM and ESN in OpenBSD 5.3

Section 5 of RFC 4106 specifies that AAD construction consists of
{SPI, ESN, SN} whereas the real packet contains only {SPI, SN}.
Unfortunately Lt doesn't follow a good example set in the Section
3.3.2.1 of RFC 4303 where upper part of the ESN, Located in the
external (to the packet) memory buffer, iLs processed by the hash
function Ln the end thus allowing to retain simple programming
tnterfaces and avoid Kludges Like the one below.

¥ ¥ ¥ ¥ ¥ ¥ ¥

*
/
if (crda->crd_flags & CRD_F_ESN) {
aadlen += 4§;
[* SPI */
COPYDATA(outtype, buf, crda->crd_skip, 4, blk);
/* Loop below will start with an offset of 4 */
LsKip = 4;
/* ESN */
bcopy(crda->crd_esn, blk + 4, 4);
/* offset output buffer bLk by 8 */
oskip = Lskip + 4;

Replay protection

== o ok % ok de

et

0 OXFEFFEFfe

everything larger than "x" is a new packet
everything inside the window requires checking

everything outside of the window is "too old"

Replay protection in the ESN world

¥ o e o e Ok

| === mmmm e g mmmm | == | - ——Pm e

0 OXFFFFFFEF OXLFFFFFFFF

record number of packets that fail authentication
retry using larger value for the upper half of ESN
in the background or using a separate processor

o~ SHAULD!

huge "thanks" to BBN

Plan for OpenBSD 5.3

merge in markus@' diff to support large anti-replay
windows

verify that we're not doing anything stupid

Questions?

