Rockbuild

a build farm for open source projects

Bjorn Stenberg

pbjorn@haxx.se

HaRX

Background: ROCKOOX

* A firmware project for mp3 l
players

» 68 different players

* 4 binaries per player
e 5 cross-compilers

* 100+ committers

Building
How many targets do you build

before you commit?

 Changes easily affect more
targets Than expected

 Nobody builds everything

Effects

* Popular targets work well
« Semi-popular get fixed regularly
* Unusual fargets are mostly broken

Unacceptable!

Devs need to know if Their change
breaks a tfarget build.

Obvious solution

Nightly builds

Obvious solution #1

Nightly builds

Problem: Noft fine-grained enough.

Obvious solution #2

A script to easily compile all fargets.

Obvious solution #2

A script to easily compile all fargets.

Problem: 2-3 hour build time.

Obvious solution #3

Get a powerful server to build after
commift.

Obvious solution #3

Get a powerful server to build after
commift.

Problem: It still takes >1 hour.

Obvious solution #3

Get a powerful server to build after
commift.

Problem: It still tfakes >1 hour.

Problem 2: Devs go away before
build is done.

We need more power!

 One machine is not enough
* Buying more servers is expensive
* What to do”?

Volunteer build farm
R

/ \‘f \
I AN
fa a2

g

Volunteer machines

Challenges:
* Infermittent availability
* Firewalls & NATs

* Low tolerance for complexity

* Varying performance & capabillities
* Low bandwidth

The simple build client

No pre-reqistration
No remote login
Support any targets/compilers you like
Come and go whenever you like

You can be behind firewall & NAT
Client is updated automatically

Runs niced and selectable # of cores

The not-so-simple server

Support a varying number of clients

...dll running at different speeds
...supporting different subsets of targefts
...and which may disappear aft any fime
And finish quickly, please!

Distribution of work

Total work

|

Build clients

UNE

Time

Work planning

Every target build has a “weight”
Every client has an avg speed

New clients are benchmarked
using lightest builds

Every client gets as much work as
It can complete in fime

Round time

* The weight of all work is known

* The speed of all clients is known

* weight / speed = time

Making a plan

 Work is In chunks, not liquid. There
will be gaps.

* [ferate over clients, starting with the
slowest. Assign as much work as
they can complete in time.

o If all work doesn't fit, increase total
round time and try again.

Reality ruins the plan

» Clients will disappear
 New clients will connect
» Clients won't perform as expected

= We need to be adapftive

Two build phases

 Phase 1. Cooperative phase

* Phase 2: Competitive phase

Cooperative phase

e Clients that finish their scheduled
work are assigned unstarted
builds from other clients.

* [f a client disconnects, its work is
marked as unassigned and
picked up by ofher clients.

* [f nO client can build a target, it is
dropped from the round.

Competitive phase

a.k.a “speculative”

» Clienfts start building targets other
clients already build.

* This avoids getting delayed by an
unexpectedly slow client.

Uploading

 When a client finishes a target, it
forks an upload process and asks
for next build job.

* This reduces upload speed as a
performance factor. Only the |last
pouild in each round Is affected.

Example

sansungyh82Bsin

nrobe58Bsin

E

atom?2/70 = Atom N270 = 43 pts/sec
lilleloror1 = Core i3 540 = 1089 pts/sec
(Factor 25 speed difference)

Build reports

HTML

01:09 <CIA-138> Commit 97c1dcO
in rockbox by Michael Giacomelli:
Enable logdiskf for all device
targets, but not bootloaders or
application.

01:12 <CIA-138> 97c1dcO build
result: 6 errors, 9 warnings
(Michael Giacomelli committed)

Build logs

archosrecorder, revision 42a725f
Goto problem: 1
Built by hex-gevaerts

Build Command: ../tools/configure --target=archosrecorder --ram=2 --type=n && make zip
Using temporary directory /tmp

Platform set to archosrecorder

Memory size selected: 2 MB

[...]

OBJCOPY compressed.bin

make[1]: Leaving directory ‘/home/fg/rockbox/buildclient/rockbox/firmware/decompressor’
error: firmware image is 205278 bytes while max size is 204800!

make: *** [/home/fg/rockbox/buildclient/rockbox/build-archosrecorder/ajbrec.ajz] Error
255

Build Failure: No 'rockbox.zip' was produced.

Performance statistics

Build client stats, revision 7fda692

For these 213 builds, the following 36 build clients participated:

This build round took 151 seconds.

Total client speed was 25897 points/second, which in ideal conditions
would complete the round in 105 seconds.

Effective round speed was 18174 points/second, making us 70%
efficient.

Performance statistics

Bad clients

 Autfomatic temporary ban on
client failure.

 Manual permanent ban

Security

* Unauthenticated build clients
« Autfo-updated client code
* Noft for building releases!

Who uses Rockbuild?

* Only Rockbox so far
* Recently made generic
 Not marketed

Other build systems

o distcc
» distributes the building file-by-file

* pest suited for local clusters

e puildbot, hudson, continuum

o static list of build clients

* no client performance matching

* samba & postgresgl custom farms

e NO commit builds

Thank you!

http://rockbuild.haxx.se

Bjorn Stenberg

bjorn@haxx.se

HaRX

http://rockbuild.haxx.se/

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36

