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Background: ROCKOOX

* A firmware project for mp3 l
players

» 68 different players

* 4 binaries per player
e 5 cross-compilers

* 100+ committers



Building
How many targets do you build

before you commit?

 Changes easily affect more
targets Than expected

 Nobody builds everything



Effects

* Popular targets work well
« Semi-popular get fixed regularly
* Unusual fargets are mostly broken




Unacceptable!

Devs need to know if Their change
breaks a tfarget build.




Obvious solution

Nightly builds




Obvious solution #1

Nightly builds

Problem: Noft fine-grained enough.




Obvious solution #2

A script to easily compile all fargets.




Obvious solution #2

A script to easily compile all fargets.

Problem: 2-3 hour build time.




Obvious solution #3

Get a powerful server to build after
commift.




Obvious solution #3

Get a powerful server to build after
commift.

Problem: It still takes >1 hour.




Obvious solution #3

Get a powerful server to build after
commift.

Problem: It still tfakes >1 hour.

Problem 2: Devs go away before
build is done.



We need more power!

 One machine is not enough
* Buying more servers is expensive
* What to do”?




Volunteer build farm
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Volunteer machines

Challenges:
* Infermittent availability
* Firewalls & NATs

* Low tolerance for complexity

* Varying performance & capabillities
* Low bandwidth



The simple build client

No pre-reqistration
No remote login
Support any targets/compilers you like
Come and go whenever you like

You can be behind firewall & NAT
Client is updated automatically

Runs niced and selectable # of cores



The not-so-simple server

Support a varying number of clients

...dll running at different speeds
...supporting different subsets of targefts
...and which may disappear aft any fime
And finish quickly, please!



Distribution of work
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Work planning

Every target build has a “weight”
Every client has an avg speed

New clients are benchmarked
using lightest builds

Every client gets as much work as
It can complete in fime



Round time

* The weight of all work is known

* The speed of all clients is known

* weight / speed = time




Making a plan

 Work is In chunks, not liquid. There
will be gaps.

* [ferate over clients, starting with the
slowest. Assign as much work as
they can complete in time.

o If all work doesn't fit, increase total
round time and try again.



Reality ruins the plan

» Clients will disappear
 New clients will connect
» Clients won't perform as expected

= We need to be adapftive



Two build phases

 Phase 1. Cooperative phase

* Phase 2: Competitive phase




Cooperative phase

e Clients that finish their scheduled
work are assigned unstarted
builds from other clients.

* [f a client disconnects, its work is
marked as unassigned and
picked up by ofher clients.

* [f nO client can build a target, it is
dropped from the round.



Competitive phase

a.k.a “speculative”

» Clienfts start building targets other
clients already build.

* This avoids getting delayed by an
unexpectedly slow client.



Uploading

 When a client finishes a target, it
forks an upload process and asks
for next build job.

* This reduces upload speed as a
performance factor. Only the |last
pouild in each round Is affected.



Example

sansungyh82Bsin

nrobe58Bsin

E

atom?2/70 = Atom N270 = 43 pts/sec
lilleloror1 = Core i3 540 = 1089 pts/sec
(Factor 25 speed difference)



Build reports

HTML

01:09 <CIA-138> Commit 97c1dcO
in rockbox by Michael Giacomelli:
Enable logdiskf for all device
targets, but not bootloaders or
application.

01:12 <CIA-138> 97c1dcO build
result: 6 errors, 9 warnings
(Michael Giacomelli committed)




Build logs

archosrecorder, revision 42a725f
Goto problem: 1
Built by hex-gevaerts

Build Command: ../tools/configure --target=archosrecorder --ram=2 --type=n && make zip
Using temporary directory /tmp

Platform set to archosrecorder

Memory size selected: 2 MB

[...]

OBJCOPY compressed.bin

make[1]: Leaving directory ‘/home/fg/rockbox/buildclient/rockbox/firmware/decompressor’
error: firmware image is 205278 bytes while max size is 204800!

make: *** [/home/fg/rockbox/buildclient/rockbox/build-archosrecorder/ajbrec.ajz] Error
255

Build Failure: No 'rockbox.zip' was produced.



Performance statistics

Build client stats, revision 7fda692

For these 213 builds, the following 36 build clients participated:

This build round took 151 seconds.

Total client speed was 25897 points/second, which in ideal conditions
would complete the round in 105 seconds.

Effective round speed was 18174 points/second, making us 70%
efficient.



Performance statistics




Bad clients

 Autfomatic temporary ban on
client failure.

 Manual permanent ban




Security

* Unauthenticated build clients
« Autfo-updated client code
* Noft for building releases!




Who uses Rockbuild?

* Only Rockbox so far
* Recently made generic
 Not marketed




Other build systems

o distcc
» distributes the building file-by-file

* pest suited for local clusters

e puildbot, hudson, continuum

o static list of build clients

* no client performance matching

* samba & postgresgl custom farms

e NO commit builds



Thank you!

http://rockbuild.haxx.se

Bjorn Stenberg

bjorn@haxx.se

HaRX


http://rockbuild.haxx.se/
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