
Mono Development for Wine
A Cry for Help



Outline

• What is Wine Mono?

• Why does it matter?

• Current status?

• How to Develop
• Building

• Code Tree Overview

• Using Changed Mono

• Debugging

• Sending Patches

• Writing Tests



What is Wine Mono?

• Wine Mono is a fork of the Mono project, and a Win32 build of Mono 
packaged for the Wine Project.

• Differences from upstream are avoided whenever possible.

• Wine cannot use Linux Mono because it needs to call back into Wine.

• The package is a .msi file that Wine can automatically download 
and/or install, and that users can install (and uninstall) manually.

• The package also includes registry keys and files to prevent programs 
from installing/needing native .NET.

• Includes some “projects” not in the main Mono repo, such as VB.



Why does it matter?

• Using MS .NET means we rely on MS to keep the download up (MS 
has removed redist downloads in the past) and provide redists for 
future releases.

• The .NET EULA requires a Windows license.

• We can’t use .NET to port applications because of the EULA.

• (I can’t make a very convincing argument that the broader Wine 
community should care because .NET works with much less effort, 
and should almost always work at least as well as Mono, but I really 
don’t like to rely on MS components.)



Current Status

• Wine Mono’s compatibility is practically 0. I have seen rare cases 
where it works for a normal Windows program that genuinely uses 
.NET.

• At the rate I am (and Alistair is) working on it, I don’t expect much 
improvement in the next few years (though I keep hoping for a 
breakthrough in mixed-mode).

• There are easy problems in the Wine bugzilla right now that no one is 
working on (search for component=mscoree).



Building

• Fetch the code:
• git clone –recursive git://github.com/madewokherd/wine-mono

• Install Wine, gmcs, and mingw-w64 compilers for both x86 and 
x86_64 targets. A 64-bit OS is not required, but old mingw may not 
work.

• Run build-winemono.sh (set MAKEOPTS=-j2 to use two cores)



Code Tree Overview

• All Windows .NET embedding API’s are in the Wine code, in dlls/mscoree.

• The C parts of the Mono runtime are in mono/mono (hopefully shouldn’t 
need to be touched much).

• Most .NET API’s are in mono/mcs/class/assembly/namespace/typename.cs
• Example: The System.Drawing.Drawing2D.GraphicsPath class is in 

mono/mcs/class/System.Drawing/System.Drawing.Drawing2D/GraphicsPath.cs

• The namespace is everything before the last dot.

• Usually the assembly name can be easily guessed based on the namespace.

• System.Windows.Forms is in the Managed.Windows.Forms assembly.

• Many classes under system are in the mscorlib assembly, which is located in the 
corlib directory.

• Visual Basic classes are in mono-basic.



Using Changed Mono

• To rebuild without starting from scratch, use build-winemono.sh with 
the -r switch.

• After running build-winemono.sh, install by running: msiexec /i 
winemono.msi

• If the version number hasn’t changed, uninstall with ‘wine uninstaller’ 
before installing the new msi file.

• Or you can copy individual files from image/ to 
drive_c/windows/mono/mono-2.0



Debugging

• Use the WINE_MONO_TRACE environment variable to trace managed code. 
Run mono --help-trace for documentation on the syntax.

• If WINE_MONO_TRACE is set, all exceptions will be printed.

• Usually this is useful, but some exceptions are benign. Mono’s winforms 
usually causes an exception involving UIAutomation that can be ignored.

• To get a stack trace of an exception, use 
WINE_MONO_TRACE=E:System.NotImplementedException (or fill in the 
actual type).

• To trace everything that enters/exits managed code, use 
WINE_MONO_TRACE=wrapper.

• Be careful, this can trace private/internal functions.



Sending Patches

• Usually, changes should go to the appropriate upstream project, not 
Wine Mono.

• The Mono project is at http://github.com/mono, and they prefer 
github pull requests.

• See https://help.github.com/articles/using-pull-requests

• The gist is that you make your own fork of upstream’s repo, push your 
change to your fork, then use the github website to make the request.

• You can also make pull requests on wine-mono and its forks, or ask 
me to merge some changes you need from upstream.

http://github.com/mono
https://help.github.com/articles/using-pull-requests


Writing Tests (1/2) 

• Mono includes a test suite based on the nunit framework, which 
vaguely reflects .NET’s behavior when it was last tested, if the API is 
from .NET.

• The official way to run the tests involves make (and Cygwin on 
Windows).

• Use build-winemono.sh with the -t switch to create a stand-alone 
version of the tests (in a directory named tests-net_version) that will 
run on any .NET runtime.

• To run tests from that directory, run nunit-console.exe with the dll file 
containing the tests you want.



Writing Tests (2/2)

• Test code is located in mono/mcs/class/<assembly>/Test

• Use the /run switch to run only one test.

• Use /fixture to run tests from a single class of tests.



Questions?


