
Benefits of the new Xen paravirtualization mode

Roger Pau Monné

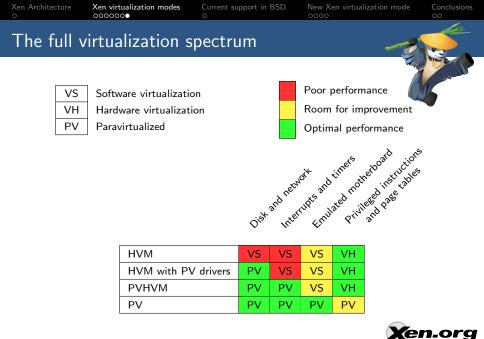
Brussels - February 2-3, 2013

- Intel
- Microsoft labs
- x86 instructions behave differently in kernel or user mode, options for virtualization were full software emulation or binary translation.
 - Design a new interface for virtualization
 - Allow guests to collaborate in virtualization
 - Provide new interfaces for virtualized guests that allow to reduce the overhead of virtualization
- The result of this work is what we know today as paravirtualiztion

- All this changes lead to the following interfaces being paravirtualized:
 - Disk and network interfaces
 - Interrupts and timers
 - Boot directly in the mode the kernel wishes to run (32 or 64bits)
 - Page tables
 - Privileged instructions

- The paravirtualization model works well on 32bit systems, but it has problems on 64bits
 - AMD decided to remove segmentation limit in 64bits, that was used by Xen to protect hypervisor memory
 - ► The 64bit architecture only has two memory protection levels
 - This is bad for the Xen architecture, three protection levels are needed in order to provide isolation between the hypervisor, the guest kernel and the guest userspace.
 - ► In 64bit PV guests every system call bounces up to Xen that performs the context switch to the guest kernel.

- Pros of paravirtualization
 - Provides near to bare metal speed
 - Reduces overhead of virtualization
- Cons of paravirtualization
 - Requires heavy modifications to the guest OS

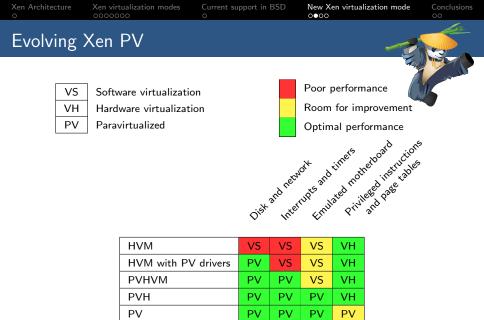

- With the introduction of hardware virtualization extensions Xen is able to run unmodified guests
- This requires emulated devices, which are handled by Qemu
- Makes use of nested page tables when available.

- Pros of full virtualization
 - Doesn't require guest OS changes
- Cons of full virtualization
 - Slow IO because of emulated devices
 - Legacy boot
 - Need to run Qemu for each guest

Brussels - February 2-3, 2013

	PV	PVHVM	HVM with PV drivers	HVM
NetBSD	YES	NO	NO	YES
FreeBSD	NO	YES	YES	YES
OpenBSD	NO	NO	NO	YES
DragonflyBSD	NO	NO	NO	YES

Main problems:


- Only PV guests are allowed as control domains (Dom0)
- Some providers will only allow PV guests, or charge extra for HVM guests

- When PV was designed there were no virtualization extensions in hardware
- Everything is done using PV interfaces
- Hardware virtualization can provide speed improvements and ease of implementation
- Previous slides show how HVM mode evolved to use PV components
- But what happens if PV evolves to use HVM components?

- Major features:
 - ► Runs in Ring 0
 - ► Uses PV entry point, skips BIOS emulation
 - Uses PV event channels, no APIC emulation
 - Native Page tables
 - Native IDT
- Development done by Mukesh Rathor at Oracle
- ► Main focus is increasing performance in 64bit PV guests

- Benefits for the BSD world:
 - Uses PVHVM callbacks for events
 - Doesn't use the PV MMU
 - ► Can be used as control domain (Dom0)
- The main benefit for BSD systems is that PVH is going to simplify one of the most difficult aspects of PV, the MMU
- Since the MMU is virtualized by hardware, porting new OSes to run in the PVH mode is greatly simplified

- Xen offers different guest virtualization modes
- Until now, PV was the only allowed mode for control domains
- PVH can be used as control domain, and simplifies the porting efforts
- The MMU changes, that where OS dependant are no longer necessary
- Drivers code can be shared between different BSD systems
- Transition from PVHVM to PVH is simpler than PV

Thanks Questions?

Brussels – February 2-3, 2013