
Introduction Tasks Memory VFS Demo

The microkernel OS Escape

Nils Asmussen

FOSDEM’14

1 / 25

Introduction Tasks Memory VFS Demo

Outline

1 Introduction

2 Tasks

3 Memory

4 VFS

5 Demo

2 / 25

Introduction Tasks Memory VFS Demo

Outline

1 Introduction

2 Tasks

3 Memory

4 VFS

5 Demo

3 / 25

Introduction Tasks Memory VFS Demo

Motivation

Beginning

Writing an OS alone? That’s way too much work!

Port of UNIX32V to ECO32 during my studies

Started with Escape in October 2008

Goals

Learn about operating systems and related topics

Experiment: What works well and what doesn’t?

What problems occur and how can they be solved?

4 / 25

Introduction Tasks Memory VFS Demo

Overview

Basic Properties

UNIX-like microkernel OS

Open source, available on github.com/Nils-TUD/Escape

The kernel and the GUI are written in C++, the rest in C

Runs on x86, ECO32 and MMIX

Besides libgcc and libsupc++, no third party components

ECO32

MIPS-like, 32-bit big-endian RISC architecture, developed by Prof.
Geisse for lectures and research

MMIX

64-bit big-endian RISC architecture of Donald Knuth as a
successor for MIX (the abstract machine from TAOCP)

5 / 25

github.com/Nils-TUD/Escape

Introduction Tasks Memory VFS Demo

Overview

Hardware

µ-kernel

Tasks Memory VFS

libc libcpp libfs libgui

p
rivileg

ed
 m

o
d

e
u

ser m
o

d
evesa

iso9660

ataext2

Drivers

vterm fileman

top

catls

ps

Applications

winmng uimng

keyb

guishell

head less ...

libinfo

...

...

6 / 25

Introduction Tasks Memory VFS Demo

Outline

1 Introduction

2 Tasks

3 Memory

4 VFS

5 Demo

7 / 25

Introduction Tasks Memory VFS Demo

Processes and Threads

Process

Virtual address space

File-descriptors

Mountspace

Threads (at least one)

. . .

Thread

User- and kernelstack

State (running, ready, blocked, . . .)

Scheduled by a round-robin scheduler with priorities

Signals

. . .

8 / 25

Introduction Tasks Memory VFS Demo

Processes and Threads

Synchronization

Process-local semaphores

Global semaphores, named by a path to a file

Userspace builds other synchronization primitives on top

“User-semaphores” as a combination of atomic operations and
process-local semaphores
Readers-writer-lock
. . .

Priority Management

Kernel adjusts thread priorites dynamically based on
compute-intensity

High CPU usage → downgrade, low CPU usage → upgrade

9 / 25

Introduction Tasks Memory VFS Demo

Outline

1 Introduction

2 Tasks

3 Memory

4 VFS

5 Demo

10 / 25

Introduction Tasks Memory VFS Demo

Memory Management

Physical Memory

Most of the memory is managed by a stack for fast alloc/free
of single frames

A small part handled by a bitmap for contiguous phys. memory

Virtual Memory

Upper part is for the kernel and shared among all processes

Lower part is managed by a region-based concept

mmap-like interface for the userspace

11 / 25

Introduction Tasks Memory VFS Demo

Virtual Memory Management

dynlink (text)

VM (proc 1) VM (proc 2)

flags=shared,exec
size=16K, procs=1,2

flags=write,grow,stack
size=12K, procs=2

flags=write,grow
size=16K, procs=1

flags=shared,exec
size=20K, procs=1,2

0x00000000

text

0xBFFFFFFF

0xA0000000

data

stack1

stack2

libc.so (text)

text

data

stack1

libc.so (text)
MMIO

fr
ee

 a
re

a
la

yo
u

te
d

 a
re

a

free area
layo

u
ted

 area

/bin/hello

/lib/libc.so

dynlink (text)

12 / 25

Introduction Tasks Memory VFS Demo

Outline

1 Introduction

2 Tasks

3 Memory

4 VFS

5 Demo

13 / 25

Introduction Tasks Memory VFS Demo

Basics

The kernel provides the virtual file system

System-calls: open, read, mkdir, mount, . . .

It’s used for:
1 Provide information about the state of the system
2 Unique names for synchronization and shared memory
3 Access userspace filesystems
4 Access devices

14 / 25

Introduction Tasks Memory VFS Demo

Drivers and Devices

Drivers are ordinary user-programs

They create devices via the system-call createdev

These are usually put into /dev

Devices can also be used to implement on-demand-generated
files (such as /system/fs/$fs)

The communication with devices works via asynchronous
message passing

15 / 25

Introduction Tasks Memory VFS Demo

IPC between Client and Driver

dev

foo

int id = createdev("/dev/foo",...);

driver

creates

16 / 25

Introduction Tasks Memory VFS Demo

IPC between Client and Driver

dev

foo

int id = createdev("/dev/foo",...);

driver

creates

int fd = open("/dev/foo",IO_MSGS);

points to

creates

inbox

client

channel

outbox

17 / 25

Introduction Tasks Memory VFS Demo

IPC between Client and Driver

dev

foo

int id = createdev("/dev/foo",...);

driver

creates

int fd = open("/dev/foo",IO_MSGS);

points to

creates

inbox

client

channel

outbox

msg.arg1 = 10;
send(fd,MSG_BAR,&msg,sizeof(msg));

receive(fd,&mid,&msg,sizeof(msg));

18 / 25

Introduction Tasks Memory VFS Demo

IPC between Client and Driver

dev

foo

int id = createdev("/dev/foo",...);

driver

creates

int fd = open("/dev/foo",IO_MSGS);

points to

creates

inbox

client

channel

outbox

msg.arg1 = 10;
send(fd,MSG_BAR,&msg,sizeof(msg));

receive(fd,&mid,&msg,sizeof(msg));

points to

driver

int fd = getwork(id,&mid,&msg,sizeof(msg),0);

19 / 25

Introduction Tasks Memory VFS Demo

IPC between Client and Driver

dev

foo

int id = createdev("/dev/foo",...);

driver

creates

int fd = open("/dev/foo",IO_MSGS);

points to

creates

inbox

client

channel

outbox

msg.arg1 = 10;
send(fd,MSG_BAR,&msg,sizeof(msg));

receive(fd,&mid,&msg,sizeof(msg));

points to

driver

int fd = getwork(id,&mid,&msg,sizeof(msg),0);

msg.arg1 = 1;
send(fd,MSG_RESP,&msg,sizeof(msg));

20 / 25

Introduction Tasks Memory VFS Demo

Integrating devices into the read-write-pattern

As in UNIX: Devices should be accessable like files

Messages: DEV OPEN, DEV READ, DEV WRITE, DEV CLOSE

Devices may support a subset of these message

If using open/read/write/close, the kernel handles the
communication

Transparent for apps whether it is a virtual file, file in
userspace fs or device

21 / 25

Introduction Tasks Memory VFS Demo

Achieving higher throughput

Copying everything twice hurts for large amounts of data

sharebuf establishes shmem between client and driver

Easy to use: just call sharebuf once and use this as the buffer

Clients don’t need to care whether a driver supports it or not

Drivers need just react on a specific message, do an mmap and
check in read/write whether the shared memory should be
used

22 / 25

Introduction Tasks Memory VFS Demo

Mounting

Concept

Every process has a mountspace, that is inherited to childs

clonems gives your process its own copy

Mountspace is a list of (path,fs-con) pairs

Kernel translates fs-system-calls into messages to fs-con

Example

// assuming that an ext2 -instance has been started

// to create /dev/ext2 -hda1

int fd = open("/dev/ext2 -hda1", ...);

mount(fd , "/mnt/hda1");

23 / 25

Introduction Tasks Memory VFS Demo

Mounting

Concept

Every process has a mountspace, that is inherited to childs

clonems gives your process its own copy

Mountspace is a list of (path,fs-con) pairs

Kernel translates fs-system-calls into messages to fs-con

Example

// assuming that an ext2 -instance has been started

// to create /dev/ext2 -hda1

int fd = open("/dev/ext2 -hda1", ...);

mount(fd , "/mnt/hda1");

23 / 25

Introduction Tasks Memory VFS Demo

Outline

1 Introduction

2 Tasks

3 Memory

4 VFS

5 Demo

24 / 25

Introduction Tasks Memory VFS Demo

The End

Get the code, ISO images, etc. on:
https://github.com/Nils-TUD/Escape

Thanks for your attention!

25 / 25

https://github.com/Nils-TUD/Escape

	Introduction
	Tasks
	Memory
	VFS
	Demo

