The microkernel OS Escape

Nils Asmussen

FOSDEM'14

1/25

@ Introduction
© Tasks

© Memory
Q VFs

© Demo

2/25

Introduction

Outline

@ Introduction

3/25

Introduction
®00

Motivation

Beginning

@ Writing an OS alone? That's way too much work!
@ Port of UNIX32V to ECO32 during my studies
o Started with Escape in October 2008

@ Learn about operating systems and related topics

@ Experiment: What works well and what doesn’t?

@ What problems occur and how can they be solved?

425

Introduction
oeo

Overview

Basic Properties

@ UNIX-like microkernel OS

@ Open source, available on github.com/Nils-TUD/Escape
@ The kernel and the GUI are written in C++, the rest in C

@ Runs on x86, ECO32 and MMIX

@ Besides libgcc and libsupc++, no third party components

ECO32

MIPS-like, 32-bit big-endian RISC architecture, developed by Prof.
Geisse for lectures and research

MMIX

64-bit big-endian RISC architecture of Donald Knuth as a
successor for MIX (the abstract machine from TAOCP)

5 /25

github.com/Nils-TUD/Escape

Introduction
ooe

Overview

Drivers Applications

’ ext2 H ata H vterm‘ ’ ls H cat H Fileman‘

’ 509660 H winmng H uimng ‘ ’ ps H top H guishell ‘ %
3

’ vesa H keyb H ‘ ’ head H less H ‘ %

’ libc ‘ ’ libcpp ‘ ’ libfs ‘ ’ libgui ‘ ’ libinfo ‘ ’ ‘

u-kernel °
s

’ Tasks ‘ ’ Memory ‘ ‘ VFS ‘ 2
3
3
a

‘ Hardware ®

6 /25

Outline

© Tasks

7/25

Processes and Threads

Process

@ Virtual address space

o File-descriptors
@ Mountspace

@ Threads (at least one)

@ User- and kernelstack

e State (running, ready, blocked, ...)
@ Scheduled by a round-robin scheduler with priorities

@ Signals

A

8/25

Processes and Threads

Synchronization

@ Process-local semaphores

@ Global semaphores, named by a path to a file
@ Userspace builds other synchronization primitives on top

e “User-semaphores” as a combination of atomic operations and
process-local semaphores

o Readers-writer-lock

o ...

Priority Management

o Kernel adjusts thread priorites dynamically based on
compute-intensity

@ High CPU usage — downgrade, low CPU usage — upgrade

9/25

Memory

Outline

© Memory

10/25

Memory
[1]

Memory Management

Physical Memory

@ Most of the memory is managed by a stack for fast alloc/free
of single frames

@ A small part handled by a bitmap for contiguous phys. memory

Virtual Memory

@ Upper part is for the kernel and shared among all processes

@ Lower part is managed by a region-based concept

o mmap-like interface for the userspace

\

11/25

Memory
oe

Virtual Memory Management

VM 1 VM 2
(proc 1) Jliblibcso {proc2)
OXBFFFFFFF
libc.so (text)
flags=shared,exec
o size=16K, procs=1,2 >
= o r\ libc.so (text) 2
4]
& —] g

dynlink (text) | T~ dynlink (Eext)
0xA0000000 _—]
stack1

stack1
flags=write,grow,stack / l

size=12K, procs=2

|

stack2

Flags=write,grow
size=16K, procs=1

flags=shared,exec data

size=20K, procs=1,2 ™

layouted area
Q.
[T N
5
—
eaJe panoAe]

text text

/bin/hello

0x00000000.

12/25

Outline

Q VFs

13 /25

VFS
©000000000

Basics

@ The kernel provides the virtual file system

@ System-calls: open, read, mkdir, mount, ...
o It's used for:

@ Provide information about the state of the system

@ Unique names for synchronization and shared memory
© Access userspace filesystems

@ Access devices

14 /25

VFS
0®00000000

Drivers and Devices

@ Drivers are ordinary user-programs

@ They create devices via the system-call createdev

@ These are usually put into /dev

@ Devices can also be used to implement on-demand-generated
files (such as /system/fs/$fs)

@ The communication with devices works via asynchronous

message passing

15 /25

VFS
0O®0000000

IPC between Client and Driver

driver

int id = createdev("/dev/fo0",...);

creates

foo

dev

16 /25

VFS
0008000000

IPC between Client and Driver

driver
int id = createdev("/dev/fo0",...);
creates
creates
dev

points to client

foo . !
int fd = open("/dev/foo",I0_MSGS);

channel

17 /25

VFS
0000®00000

IPC between Client and Driver

driver
int id = createdev("/dev/fo0",...);
creates
creates
dev

points to client

foo !
int fd = open("/dev/foo",I0_MSGS);

channel msg.argl = 10;

inbox send(fd,MSG_BAR,&msg,sizeof(msg));

—» receive(fd,&mid,&msg,sizeof(msg));

18 /25

VFS
00000@0000

IPC between Client and Driver

driver
int id = createdev("/dev/fo0",...);
creates
creates
dev
points to client
foo . ! "
int fd = open("/dev/foo",I0_MSGS);
points to channel msg.argl = 10;
{ inbox send(fd,MSG_BAR,&msg,sizeof(msg));
—» receive(fd,&mid,&msg,sizeof(msg));
driver

L
int fd = getwork(id,&mid,&msg,sizeof(msg),0);

19/25

VFS
000000®000

IPC between Client and Driver

driver
int id = createdev("/dev/fo0",...);
creates
creates
dev
points to client
foo . ! "
int fd = open("/dev/foo",I0_MSGS);
points to channel msg.argl = 10;
——{ inbox | send(fd,MSG_BAR,&msg,sizeof(msg));
outbox receive(fd,&mid,&msg,sizeof(msg));

driver
int fd = getwork(id,&mid,&msg,sizeof(msg),0);

msg.argl = 1;
send(fd,MSG_RESP,&msg,sizeof(msg));

20 /25

VFS
0000000800

Integrating devices into the read-write-pattern

As in UNIX: Devices should be accessable like files
Messages: DEV_OPEN, DEV_READ, DEV_WRITE, DEV_CLOSE
Devices may support a subset of these message

If using open/read/write/close, the kernel handles the
communication

Transparent for apps whether it is a virtual file, file in
userspace fs or device

21/25

VFS
0000000080

Achieving higher throughput

Copying everything twice hurts for large amounts of data
sharebuf establishes shmem between client and driver

Easy to use: just call sharebuf once and use this as the buffer
Clients don't need to care whether a driver supports it or not

Drivers need just react on a specific message, do an mmap and
check in read/write whether the shared memory should be
used

22 /25

VFS
000000000e

Mounting

Every process has a mountspace, that is inherited to childs
clonems gives your process its own copy

Mountspace is a list of (path,fs-con) pairs

Kernel translates fs-system-calls into messages to fs-con

23 /25

VFS
000000000e

Mounting

Every process has a mountspace, that is inherited to childs
clonems gives your process its own copy

Mountspace is a list of (path,fs-con) pairs

Kernel translates fs-system-calls into messages to fs-con

// assuming that an ext2-instance has been started
// to create /dev/ext2-hdal

int fd = open("/dev/ext2-hdal", ...);

mount (fd, "/mnt/hdal");

23 /25

Outline

© Demo

24 /25

The End

Get the code, ISO images, etc. on:
https://github.com/Nils-TUD/Escape

Thanks for your attention!

25 /25

https://github.com/Nils-TUD/Escape

	Introduction
	Tasks
	Memory
	VFS
	Demo

