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Motivation

Beginning

@ Writing an OS alone? That's way too much work!
@ Port of UNIX32V to ECO32 during my studies
o Started with Escape in October 2008

@ Learn about operating systems and related topics

@ Experiment: What works well and what doesn’t?

@ What problems occur and how can they be solved?
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Overview

Basic Properties

@ UNIX-like microkernel OS

@ Open source, available on github.com/Nils-TUD/Escape
@ The kernel and the GUI are written in C++, the rest in C

@ Runs on x86, ECO32 and MMIX

@ Besides libgcc and libsupc++, no third party components

ECO32

MIPS-like, 32-bit big-endian RISC architecture, developed by Prof.
Geisse for lectures and research

MMIX

64-bit big-endian RISC architecture of Donald Knuth as a
successor for MIX (the abstract machine from TAOCP)
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Processes and Threads

Process

@ Virtual address space

o File-descriptors
@ Mountspace

@ Threads (at least one)

@ User- and kernelstack

e State (running, ready, blocked, ...)
@ Scheduled by a round-robin scheduler with priorities

@ Signals

A
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Processes and Threads

Synchronization

@ Process-local semaphores

@ Global semaphores, named by a path to a file
@ Userspace builds other synchronization primitives on top

e “User-semaphores” as a combination of atomic operations and
process-local semaphores

o Readers-writer-lock

o ...

Priority Management

o Kernel adjusts thread priorites dynamically based on
compute-intensity

@ High CPU usage — downgrade, low CPU usage — upgrade
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Memory Management

Physical Memory

@ Most of the memory is managed by a stack for fast alloc/free
of single frames

@ A small part handled by a bitmap for contiguous phys. memory

Virtual Memory

@ Upper part is for the kernel and shared among all processes

@ Lower part is managed by a region-based concept

o mmap-like interface for the userspace

\

11/25



Memory
oe

Virtual Memory Management
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Basics

@ The kernel provides the virtual file system

@ System-calls: open, read, mkdir, mount, ...
o It's used for:

@ Provide information about the state of the system

@ Unique names for synchronization and shared memory
© Access userspace filesystems

@ Access devices
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Drivers and Devices

@ Drivers are ordinary user-programs

@ They create devices via the system-call createdev

@ These are usually put into /dev

@ Devices can also be used to implement on-demand-generated
files (such as /system/fs/$fs)

@ The communication with devices works via asynchronous

message passing
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IPC between Client and Driver

driver

int id = createdev("/dev/fo0",...);

creates

foo

dev
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IPC between Client and Driver

driver
int id = createdev("/dev/fo0",...);
creates
creates
dev

points to client

foo . !
int fd = open("/dev/foo",I0_MSGS);

channel
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IPC between Client and Driver

driver
int id = createdev("/dev/fo0",...);
creates
creates
dev

points to client

foo !
int fd = open("/dev/foo",I0_MSGS);

channel msg.argl = 10;

inbox send(fd,MSG_BAR,&msg,sizeof(msg));

—» receive(fd,&mid,&msg,sizeof(msg));
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IPC between Client and Driver

driver
int id = createdev("/dev/fo0",...);
creates
creates
dev
points to client
foo . ! "
int fd = open("/dev/foo",I0_MSGS);
points to channel msg.argl = 10;
{ inbox send(fd,MSG_BAR,&msg,sizeof(msg));
—» receive(fd,&mid,&msg,sizeof(msg));
driver

L
int fd = getwork(id,&mid,&msg,sizeof(msg),0);

19/25



VFS
000000®000

IPC between Client and Driver

driver
int id = createdev("/dev/fo0",...);
creates
creates
dev
points to client
foo . ! "
int fd = open("/dev/foo",I0_MSGS);
points to channel msg.argl = 10;
——{ inbox | send(fd,MSG_BAR,&msg,sizeof(msg));
outbox receive(fd,&mid,&msg,sizeof(msg));

driver
int fd = getwork(id,&mid,&msg,sizeof(msg),0);

msg.argl = 1;
send(fd,MSG_RESP,&msg,sizeof(msg));
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Integrating devices into the read-write-pattern

As in UNIX: Devices should be accessable like files
Messages: DEV_OPEN, DEV_READ, DEV_WRITE, DEV_CLOSE
Devices may support a subset of these message

If using open/read/write/close, the kernel handles the
communication

Transparent for apps whether it is a virtual file, file in
userspace fs or device
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Achieving higher throughput

Copying everything twice hurts for large amounts of data
sharebuf establishes shmem between client and driver

Easy to use: just call sharebuf once and use this as the buffer
Clients don't need to care whether a driver supports it or not

Drivers need just react on a specific message, do an mmap and
check in read/write whether the shared memory should be
used
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Mounting

Every process has a mountspace, that is inherited to childs
clonems gives your process its own copy

Mountspace is a list of (path,fs-con) pairs

Kernel translates fs-system-calls into messages to fs-con
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Mounting

Every process has a mountspace, that is inherited to childs
clonems gives your process its own copy

Mountspace is a list of (path,fs-con) pairs

Kernel translates fs-system-calls into messages to fs-con

// assuming that an ext2-instance has been started
// to create /dev/ext2-hdal

int fd = open("/dev/ext2-hdal", ...);

mount (fd, "/mnt/hdal");
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The End

Get the code, ISO images, etc. on:
https://github.com/Nils-TUD/Escape

Thanks for your attention!
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