An Introduction to Sage

Arvind S Raj

Department of Cybersecurity Systems and Networks Amrita University, India

1 February 2014 / FOSDEM

- Graduate CS student at Amrita University, India.
- Passionate about computer security and Python.
- Use Sage in Cryptography labs, Mathematics courses and CTF contests.

Objective

Convince you that Sage is cool and should be used in math courses.
(1) Overview and Installation of Sage
(2) Basic usage
(3) Applications in various domains
(4) More applications and further reading
(5) Contributing to Sagemath

Overview and Installation of Sage

Basic usage
Interactive shell and scripting
Aritimeicic and built in functions

Applications in various domains
Algebra
Number Theory
Calculus
Graph ploting
Matrix algebra
Sage and 炣 X
More applications and further reading

Contributing to Sagemath

(1) Overview and Installation of Sage

(2) Basic usage

Interactive shell and scripting
Arithmetic and built-in functions
(3) Applications in various domains Algebra Number Theory Calculus Graph plotting Matrix algebra Sage and LATEX
(4) More applications and further reading
(5) Contributing to Sagemath

Getting Started

- GPL licensed mathematics software.
- Unified interface to about 90 popular Python libraries.
- Two modes: command(like Python shell) and notebook(web interface).
- Power of IPython shell and Python programming language.
- "sagerc" file: \$HOME/.sage/init.sage or \$SAGE_STARTUP_FILE.
- Installation
- Pre-built binaries for most OS.
- PPA for Ubuntu.
- Packaging efforts underway for Debian and Fedora.
(1) Overview and Installation of Sage
(2) Basic usage

Interactive shell and scripting
Arithmetic and built-in functions
(3) Applications in various domains

Algebra
Number Theory
Calculus
Graph plotting
Matrix algebra
Sage and LATEX
(4) More applications and further reading
(5) Contributing to Sagemath

Interactive shell and scripting

- Sage interpreter: IPython shell.
- Sage scripts
- Similar to Python scripts; .sage extension.
- import names from sage.all
- Run as sage <filename> <arguments> like Python.
- Other possibilities: profiling, compiling sage files(Cython), access C functions directly.

Arithmetic and built-in functions

- General arithmetic supported by an (I)Python shell.
- \wedge is exponent and $\wedge \wedge$ is XOR.
- For integers, / reduces to lowest fraction and // performs integer division.
- Support mathematical functions and constants with arbitrary precision.
- pi.n(digits=20) $=3.1415926535897932385$
- e.n(digits=25) $=2.718281828459045235360287$
- golden_ratio.n(prec=60) $=1.6180339887498948$
- $n(\sin (p i / 3), ~ p r e c=60)=0.86602540378443865$
- sqrt(263).n(digits=20) = 16.217274740226854774
- n(cos (5*pi/4), prec=60) = -0.70710678118654752

Applications in various domains
Algebra
Number Theory
Calculus
Graph ploting
Matrix algebra
Sage and $\mathrm{LT}_{\mathrm{E}} \mathrm{X}$

More

applications and further reading

Contributing to Sagemath
(1) Overview and Installation of Sage
(2) Basic usage

Interactive shell and scripting
Arithmetic and built-in functions
(3) Applications in various domains

Algebra
Number Theory
Calculus
Graph plotting
Matrix algebra
Sage and $\operatorname{LAT} \mathrm{E}_{\mathrm{E}} \mathrm{X}$
(4) More applications and further reading
(5) Contributing to Sagemath

Algebra

- Factorizing polynomials.
- factor $\left(x^{4}-15 x^{3}+84 x^{2}-208 x+192\right)=$

$$
(x-3)(x-4)^{3}
$$

- $\operatorname{factor}\left(x^{3}-6 x^{2}+11 x-6\right)=(x-1)(x-2)(x-3)$
- Solving polynomial equations.
- solve $\left(\left[x^{2}-4 x+2==-1\right], x\right)=[x=3, x=1]$
- Solutions to $x^{2}+3 x y+y^{2}=0$ and $x-y=4=$ [[1.1055728, -2.8944272], [2.8944272, -1.1055728]]
- Use find_root where solve does not work. Also useful to find solutions in a particular interval.
- solve $(\cos (t)==\sin (t), t)=[\sin (t)=\cos (t)]$
- find_root $(\cos (t)==\sin (t), 0, p i)=0.785398163397$

Number Theory

- Modulus: $\bmod (27,12)=3$ and power_mod $(27,2,12)=$ 9
- Primality test: is_prime $(13)=$ True, is_prime $(15)=$ False
- prime_range $(1,35)=$ [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31].
- Generator version: primes $(1,35)$
- primes_first_n(11) = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31]
- next_prime $(29)=31$ and previous_prime $=23$
- factorial $(20)=2432902008176640000$, factor $(20)=$ $2^{2} \cdot 5$, divisors(20) $=[1,2,4,5,10,20]$
- $\operatorname{gcd}(10,15)=5, \operatorname{lcm}(10,15)=30$
- Differentiation
- $\operatorname{diff}(\sin (x)+\cos (x)=\cos (x)-\sin (x)$
- $\operatorname{diff}\left(\left(\sin \left(x^{\wedge} 2\right)^{\wedge} 3\right)\right)=6 x \cos \left(x^{2}\right) \sin \left(x^{2}\right)^{2}$
- Integration
- integral $(\cos (x)-\sin (x))=\cos (x)+\sin (x)$
- integral $\left(6 * x * \cos \left(x^{\wedge} 2\right) * \sin \left(x^{\wedge} 2\right)^{\wedge} 2, x\right)=\sin \left(x^{2}\right)^{3}$
- Partial differential and solving differential equations also possible!

Graph Plotting

Circle of radius 4 centered at $(0,0): c=\operatorname{circle}((0,0), 4)$

Graph Plotting(cont.)

Multiple functions in same plot.

$$
\begin{aligned}
& \operatorname{plot}(\sin (x),-20,20, \text { rgbcolor }=(0,0,1))+ \\
& \operatorname{plot}(\cos (x),-20,20, \text { rgbcolor }=(1,0,0))
\end{aligned}
$$

Graph Plotting(cont.)

$$
f=\frac{\sin (y * y+x * x)}{\sqrt{(x * x+y * y+.0001)}}: \operatorname{plot} 3 d(f,(-3,3),(-3,3))
$$

Matrix algebra

- Creating matrices: $m=\operatorname{Matrix}([[1,2],[3,4],[5,6]])$
- Arithmetic operations
- $P=\operatorname{Matrix}([[1,2],[3,4]]), Q=\operatorname{Matrix}([[7,8],[5,6]])$
- $\mathrm{P}+\mathrm{Q}=\left(\begin{array}{ll}8 & 10 \\ 8 & 10\end{array}\right), \mathrm{P}-\mathrm{Q}=\left(\begin{array}{ll}-6 & -6 \\ -2 & -2\end{array}\right)$
- $\mathrm{P}^{*} \mathrm{Q}=\left(\begin{array}{ll}17 & 20 \\ 41 & 48\end{array}\right), 4^{*} \mathrm{P}=\left(\begin{array}{rr}4 & 8 \\ 12 & 16\end{array}\right)$
- $P^{3}=\left(\begin{array}{rr}37 & 54 \\ 81 & 118\end{array}\right), P^{-1}=\left(\begin{array}{rr}-2 & 1 \\ \frac{3}{2} & -\frac{1}{2}\end{array}\right),|\mathrm{P}|=-2$
- More functions: is_singular, is_symmetric, is_skew_symmetric, is_invertible, is_square

LTEXand SageTEX

- ATEXrepresentation: latex(P)

```
    \left(\begin{array} {rr}
    1 & 2
    3 & 4
    \end{array}\right)
```

- view(P): Display PDF(pdflatex)/HTML(MathJAX) depending on mode.
- SageTEX: Call Sage commands from ${ }^{L A} T_{E X} X$.
- Regular statement: \sage\{pow_mod(27, 2, 12)\}
- Plots: \sageplot\{plot(sin(x) + $\cos (x),-20,20)\}$
- \sageblock and \sagesilent: Embedding Sage code

Arvind

Overview and Installation of Sage

Basic usage
Interactive shell and scripting
Arithmetic and built-in functions

Applications in various domains
Algebra
Number Theory
Calculus
Graph plotting
Matrix algebra
Sage and $\mathrm{kT}_{\mathrm{E}} \mathrm{X}$
More
applications and further reading

Contributing to Sagemath
(1) Overview and Installation of Sage
(2) Basic usage

Interactive shell and scripting
Arithmetic and built-in functions
(3) Applications in various domains Algebra Number Theory Calculus Graph plotting Matrix algebra Sage and LATEX
(4) More applications and further reading
(5) Contributing to Sagemath

Other applications

- Interfacing with other algebra systems(GP/PARI, Singular, Maxima)
- Polynomials
- Combinatorics
- Graph and group theory
- Linear algebra
- Elliptic curves
- Advanced portions of everything discussed

References and further reading

- Sage tutorial: http://www.sagemath.org/doc/tutorial/index.html
- Thematic tutorials:
http://www.sagemath.org/doc/thematic_tutorials/index.html
- Tutorials for those with some mathematics background: http://www.sagemath.org/doc/prep/index.html

Arvind

Overview and Installation of Sage

Basic usage
Interactive shell and scripting
Arithmetic and builtin functions

Applications in various domains
Algebra
Number Theory
Calculus
Graph plotting
Matrix algebra
Sage and $\mathrm{kT}_{\mathrm{E}} \mathrm{X}$
More applications and further reading

Contributing to Sagemath
(1) Overview and Installation of Sage
(2) Basic usage

Interactive shell and scripting

Arithmetic and built-in functions
(3) Applications in various domains Algebra Number Theory Calculus Graph plotting Matrix algebra Sage and LATEX
(4) More applications and further reading
(5) Contributing to Sagemath

Contributing to Sagemath

- Packaging for Linux distros.
- Improve startup time.
- Ul enhancements: Notebook and 2D plots.
- Mobile applications: Android, iOS.
- Mathematicians help with specific libraries.
- Visit http://www.sagemath.org/development.html for more information on getting involved.

Thank you!

Algebra

Number Theory
Calculus
Graph plotting
Matrix algebre
Sage and $\operatorname{LT}_{\mathrm{T}} \mathrm{X} \mathrm{X}$

More

applications and further reading

Contributing to Sagemath

