Enlightenment as Standalone Wayland Compositor

Christopher Michael & Stefan Schmidt
FOSDEM 2014




Intro

Who are we?

EFL upstream developers
Working for Samsung Open Source Group UK
Direct upstream work



Agenda

Quick EFL Glossary

Wayland Toolkit Support in EFL and Elementary
Step 1: Identify components E relies on from X
Step 2: Allow Rendering with Wayland

Step 3: DRM Handling

Step 4: Input Handling

Step 5: VT Handling

Step 6: Session recovery

Step 7: X Fallback Support through XWayland
Missing Wayland Parts

Status

Summary



Quick EFL Glossary

Enlightenment Foundation Libraries (EFL): sort of low
level libs

Elementary: a widget toolkit
Enlightenment: the window manager itself
Evas: canvas library in EFL

Ecore_x: our xlib abstraction T




Wayland Toolkit Support in EFL and Elementary

General Wayland protocol support started by Chris
around 2011

EFL/Elementary Wayland apps running in weston and
Enlightenment

Subsurface protocol

But this talk is about a standalone wayland
compositor :-)



Wayland Architecture

Image source: http://wayland.freedesktop.org/architecture.html




Step 1: Identify components E relies on from X

Rendering

DRM handling
Input handling
VT handling
Session recovery



Step 2: Allow Rendering with Wayland

Wayland engines available in Evas for a long time

Shared memory with double and triple buffering
EGL engine

Switched all Xwindow usage to evas canvas to allow
X11 as well as wayland surfaces

Many other abstractions from X already existed in ecore



Step 3: DRM Handling (1/2)

Separate Evas rendering engine

Supports software rendering (generic drm FBOS)
Supports hardware accelerated rendering (egl)
Can be switched Run-Time via Environment Variable

Not wayland specific (no use of wl_shm buffers or wl_egl windows)
Abstracted buffer management
GBM (Generic Buffer Management)
TBM (Tizen Buffer Management)
Others ? (Gem)



Step 3: DRM Handling (2/2)

Separate Ecore_Drm library

Central library for Input, Output, VT Handling

Implemented using generic drm functions (libdrm)
This allows to function via kms or generic fb

Supports Output Hotplug (via udev)

Spawns privileged binary for access to restricted input devices
Utilizes Unix Socket FD Passing for communication back to main process

Transparent support for Page Flip & VBlank Events

Exposes limited API functions
Vital (potentially harmful) functions Not exposed to userland



Step 4: Input Handling

Originally designed to use libinput from Jonas Adahl

Removed libinput due to issues with libinput event processing
Possibly re-implemented using libinput in the future

Utilizes Udev for Input Device Discovery

Supports Evdev devices

Keyboard, Mouse, Touchpad, Multi-Touch devices
Joystick support currently disabled

Exposed API functions (via ecore_drm) to dynamically
enable/disable input device(s)



Step 5: VT Handling

Implemented inside ecore_drm library
Transparent to the user of ecore_drm

Drops being "drm master” on switch Away from VT
Acquires "drm master" on switch To the VT

Uses Proper kernel vt switch signals

SIGUSRI1 for release
SIGUSR2 for acquire



Step 6: Session recovery

E catches segfault and allows session recovery with all
applications restored

X helps with a lot functionality here
Wayland protocol has nothing for this yet

Prototyping something similar as a protocol extension
right now



Step 7: X Fallback Support through XWayland

Wayland protocol support in the
major toolkits gets better

There will be always applications
without wayland support (plain X
apps, toolkit without wl support,
etc)

We listen on the X socket and
start Xwayland on demand

Starts with the first X client using it
and let it time out after the last X
client leaves

X Client
k

Wayland Client ® | \@
- |

X server

Wayland
Compositor

8
\
o\ \a

A
KMS evdev

Kernel
Image source: http://wayland.freedesktop.org/xserver.html



Missing Wayland Parts

Better support for XDG shell (core protocol is missing
desktop related parts, like iconify, systray, border
icons, ...)

But XDG shell in wayland need to mature
Protocol extension for session recovery

Feedback from mutter, kwin and Enlightenment helps to
Identify missing pieces



Status

What do we have working

VT switching, input and ouput device handling
Running wayland as well as X applications
No longer a hard dependency on X in Enlightenment

What is work in progress

Buffer abstraction for rendering
Not ready for day to day usage
Session recovery



Summary

Making a X11 window manager act as a standalone
Wayland compositor as well is a HUGE task

The wayland XDG shell extension is missing various
pieces to allow for the full desktop experience we are
used to

Things like input handling, VT switching. etc needs to be
done by the compositor itself now. Hopefully some
sharing between projects.



Thank you!



	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18

