
Enlightenment as Standalone Wayland Compositor

Christopher Michael & Stefan Schmidt
FOSDEM 2014

Intro

● Who are we?
– EFL upstream developers
– Working for Samsung Open Source Group UK
– Direct upstream work

Agenda

● Quick EFL Glossary

● Wayland Toolkit Support in EFL and Elementary

● Step 1: Identify components E relies on from X

● Step 2: Allow Rendering with Wayland

● Step 3: DRM Handling

● Step 4: Input Handling

● Step 5: VT Handling

● Step 6: Session recovery

● Step 7: X Fallback Support through XWayland

● Missing Wayland Parts

● Status

● Summary

Quick EFL Glossary

● Enlightenment Foundation Libraries (EFL): sort of low
level libs

● Elementary: a widget toolkit
● Enlightenment: the window manager itself
● Evas: canvas library in EFL
● Ecore_x: our xlib abstraction

Wayland Toolkit Support in EFL and Elementary

● General Wayland protocol support started by Chris
around 2011

● EFL/Elementary Wayland apps running in weston and
Enlightenment

● Subsurface protocol
● But this talk is about a standalone wayland

compositor :-)

Wayland Architecture

Image source: http://wayland.freedesktop.org/architecture.html

Step 1: Identify components E relies on from X

● Rendering
● DRM handling
● Input handling
● VT handling
● Session recovery

Step 2: Allow Rendering with Wayland

● Wayland engines available in Evas for a long time
– Shared memory with double and triple buffering
– EGL engine

● Switched all Xwindow usage to evas canvas to allow
X11 as well as wayland surfaces

● Many other abstractions from X already existed in ecore

Step 3: DRM Handling (1/2)

● Separate Evas rendering engine
– Supports software rendering (generic drm FBOs)
– Supports hardware accelerated rendering (egl)
– Can be switched Run-Time via Environment Variable

● Not wayland specific (no use of wl_shm buffers or wl_egl windows)
– Abstracted buffer management
– GBM (Generic Buffer Management)
– TBM (Tizen Buffer Management)
– Others ? (Gem)

Step 3: DRM Handling (2/2)

● Separate Ecore_Drm library
● Central library for Input, Output, VT Handling
● Implemented using generic drm functions (libdrm)

– This allows to function via kms or generic fb
● Supports Output Hotplug (via udev)
● Spawns privileged binary for access to restricted input devices

– Utilizes Unix Socket FD Passing for communication back to main process
● Transparent support for Page Flip & VBlank Events
● Exposes limited API functions

– Vital (potentially harmful) functions Not exposed to userland

Step 4: Input Handling

● Originally designed to use libinput from Jonas Adahl
– Removed libinput due to issues with libinput event processing
– Possibly re-implemented using libinput in the future

● Utilizes Udev for Input Device Discovery
● Supports Evdev devices

– Keyboard, Mouse, Touchpad, Multi-Touch devices
– Joystick support currently disabled

● Exposed API functions (via ecore_drm) to dynamically
enable/disable input device(s)

Step 5: VT Handling

● Implemented inside ecore_drm library
● Transparent to the user of ecore_drm
● Drops being "drm master" on switch Away from VT
● Acquires "drm master" on switch To the VT
● Uses Proper kernel vt switch signals

– SIGUSR1 for release
– SIGUSR2 for acquire

Step 6: Session recovery

● E catches segfault and allows session recovery with all
applications restored

● X helps with a lot functionality here
● Wayland protocol has nothing for this yet
● Prototyping something similar as a protocol extension

right now

Step 7: X Fallback Support through XWayland

● Wayland protocol support in the
major toolkits gets better

● There will be always applications
without wayland support (plain X
apps, toolkit without wl support,
etc)

● We listen on the X socket and
start Xwayland on demand

● Starts with the first X client using it
and let it time out after the last X
client leaves

Image source: http://wayland.freedesktop.org/xserver.html

Missing Wayland Parts

● Better support for XDG shell (core protocol is missing
desktop related parts, like iconify, systray, border
icons, ...)

● But XDG shell in wayland need to mature
● Protocol extension for session recovery
● Feedback from mutter, kwin and Enlightenment helps to

identify missing pieces

Status

● What do we have working
– VT switching, input and ouput device handling
– Running wayland as well as X applications
– No longer a hard dependency on X in Enlightenment

● What is work in progress
– Buffer abstraction for rendering
– Not ready for day to day usage
– Session recovery

Summary

● Making a X11 window manager act as a standalone
Wayland compositor as well is a HUGE task

● The wayland XDG shell extension is missing various
pieces to allow for the full desktop experience we are
used to

● Things like input handling, VT switching. etc needs to be
done by the compositor itself now. Hopefully some
sharing between projects.

Thank you!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18

