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License

License: Attribution-ShareAlike 4.0 Unported (CC BY-SA 4.0)

http://creativecommons.org/licenses/by-sa/4.0/
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Current mess

set non-stop on/o�

set target-async on/o�

set scheduler-locking on/of/step

set schedule-multiple on/o�

`target remote' vs `target extended-remote'
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Where we're headed

WORLD DOMINATION

Local/Remote feature parity I/T sets Async by default Multi-process Multi-target

Finer grained control of threads

All-stop on top of non-stop

Target can non-stop (done)

Target can async (done)
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GDBserver, what's that?

For native/local debugging on the host, GDB alone is su�cient.

spawn processes (�run�)
attach to existing processes
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GDBserver, how's that?

For remote / cross debugging, GDB connects to something on
the target end.

bare metal embedded systems → remote stub, debug probe.

emulators → builtin RSP implementation

GNU/Linux (and others) → the GDBserver program.
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GDBserver, basic usage

GDBserver

$ gdbserver :9999 a.out

Process /tmp/a.out created; pid = 22952

Listening on port 9999

GDB

$ gdb /tmp/a.out

Reading symbols from /tmp/a.out...done.

(gdb) target remote :9999

Remote debugging using :9999

0x000000323d001530 in _start () from \

/lib64/ld-linux-x86-64.so.2

(gdb)
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Remote Serial Protocol (RSP)

Client/Server model
GDB == Client

runs on the host

Target == Server

Variety of transports

Serial
TCP/IP
UDP/IP
POSIX pipes
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Remote Serial Protocol (RSP)

(Mostly) text-based
1 ⇒ m aa55aa55,4 (read 4 bytes at 0xaa55aa55)
2 ⇐ ff00ff00 (here's your bytes)
3 ⇒ Z0 0x1234 (insert breakpoint at 0x1234)
4 ⇐ OK
5 Frame format:

`$' packet-data `#' checksum

Try `(gdb) set debug remote 1' to see all the RSP tra�c.

https://sourceware.org/gdb/onlinedocs/gdb/Remote-Protocol.html

Pedro Alves (Red Hat) GDB, so where are we now? 2014-02-02 Sun 13 / 55

https://sourceware.org/gdb/onlinedocs/gdb/Remote-Protocol.html


Topic

1 Introduction

2 GDBserver

3 Remote Serial Protocol

4 Local vs remote feature parity

5 I/t sets

6 All-stop vs non-stop modes

7 All-stop UI on top of non-stop target

8 Target async by default

9 Multi-process debugging

10 Multi-target

11 Reverse debugging

12 End

Pedro Alves (Red Hat) GDB, so where are we now? 2014-02-02 Sun 14 / 55



WORLD DOMINATION

Local/Remote feature parity I/T sets Async by default Multi-process Multi-target

Finer grained control of threads

All-stop on top of non-stop

Target can non-stop (done)

Target can async (done)

Pedro Alves (Red Hat) GDB, so where are we now? 2014-02-02 Sun 15 / 55



Local vs remote debugging

Should be transparent, right?
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I wish it were so

Local/Remote feature set comparison

GDB (native) GDBserver

base
debugging

tracepoints / IPAcatch syscall

fork/vfork/exec
following

globbing / parameter
expansion

(...)

can link to
libthread_db statically

access memory of
running thread

(...)

thread names
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GDBserver, in blocks

GDB

interpreters

CLI MI (others)

language

C / C++ / ObjC /
Ada / Fortran /

Go /  D / ...

target interface

RSP client
(target remote)

Simulator
(target sim)

executable

core dump

RSP
server

breakpoints

tracepoints

execution
control

target interface

native target
(ptrace on GNU/Linux,

Win32 debug API,
etc.)

GDBserver

breakpoint

(break, watch
catch, trace)

execution
control

stack / frame
analysis

symbol handling

(DWARF/ELF/etc.)

architecture

x86 / ARM
Aarch64 / MIPS / 

SPARC / Alpha / ...

native target
(ptrace on GNU/Linux,

Win32 debug API,
etc.)
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Surprise, we love code duplication

GDBserver's native target code != GDB's native target code
GDB

interpreters

CLI MI (others)

language

C / C++ / ObjC /
Ada / Fortran /

Go /  D / ...

target interface

RSP client
(target remote)

Simulator
(target sim)

executable

core dump

RSP
server

breakpoints

tracepoints

execution
control

target interface

native target
(ptrace on GNU/Linux,

Win32 debug API,
etc.)

GDBserver

breakpoint

(break, watch
catch, trace)

execution
control

stack / frame
analysis

symbol handling

(DWARF/ELF/etc.)

architecture

x86 / ARM
Aarch64 / MIPS / 

SPARC / Alpha / ...

native target
(ptrace on GNU/Linux,

Win32 debug API,
etc.)
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Bright idea

Gosh, we could share all that code, couldn't we?
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GDBserver-only features

tracepoints

fast tracepoints / in-process agent (IPA)

can access memory of running thread

other libcs (uCLinux/uClibc, Android, etc.)

static libthread_db.a, no libthread_db at all.

misc others
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Native-only features, part 1

fork/vfork/exec

set follow-fork-mode (child/parent)
catch fork/vfork/exec

catch syscall

`(gdb) set environment FOO=bar'

set inferior cwd

(gdb) cd somewhere
(gdb) pwd
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Native-only features, part 2

use shell to start program (globbing, wildcard expansion and I/O
redirection)

Native

$ gdb /usr/bin/ls

(gdb) run *

Starting program: /usr/bin/ls *

1 2

[Inferior 1 (process 4750) exited normally]

GDBserver

Process /usr/bin/ls created; pid = 5260

/usr/bin/ls: cannot access *: No such file or directory

Child exited with status 2
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Native-only features, part 3

GDB can set/show (user de�ned) thread names:

Example (Thread names)

(gdb) info threads

Id Target Id Frame

* 1 Thread 0x77fc9740 (LWP 932) "foo" main () at foo.c:29

^^^

(gdb) thread name bar

^^^

(gdb) info threads

Id Target Id Frame

* 1 Thread 0x77fc9740 (LWP 932) "bar" main () at foo.c:29

^^^

(gdb)
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Yet more missing features when remote debugging

Others:

Attach auto-load exec
Graceful handling of leader thread exiting
Inferior IO

More. . .
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Other di�erences

Synching inferior thread list needs explicit �info threads�.

�info threads� output di�erent between native/remote:

GDB

(gdb) info threads

Id Target Id Frame

* 1 Thread 0x7ffff7fcc740 (LWP 19056) "test" main ()

at test.c:35

GDBserver

(gdb) info threads

Id Target Id Frame

* 1 Thread 19056 main () at test.c:35
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Current direction

1 GDBserver > GDB (targets backends)

2 Drop GDB's backends

Project is tracked here:
https://sourceware.org/gdb/wiki/LocalRemoteFeatureParity

Related:
https://sourceware.org/gdb/wiki/Common
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WORLD DOMINATION

Local/Remote feature parity I/T sets Async by default Multi-process Multi-target

Finer grained control of threads

All-stop on top of non-stop

Target can non-stop (done)

Target can async (done)
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inferior/thread sets, history 1

Currently GDB can debug:

multi-threaded programs

programs composed of multiple processes

By default:

any event triggers in the debugged program ⇒ all threads stop
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inferior/thread sets, history 2

Too intrusive when debugging live running systems

Enter non-stop mode (GDB 7.0)

Keep all threads running, except the thread that hit the event

[The old (and default) mode was named the all-stop mode]

Pedro Alves (Red Hat) GDB, so where are we now? 2014-02-02 Sun 29 / 55



inferior/thread sets, history 3

All or nothing. . .

Not �exible enough.

Desirable to group related threads, and apply group actions, e.g.:

step, continue, etc.

set breakpoints speci�c to said groups or sets

specify what should be implicitly paused when a breakpoint
triggers
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inferior/thread sets, specs

collection/combination of execution/scoping objects:
inferiors/processes, threads, cores, Ada tasks, etc.

ranges and wildards
assignable names
union (,) and intersection (.) operators
set negation (�)
refer to current and/or future entities
prede�ned sets:

all threads, all running, all stopped, etc.

Example (a spec)

`stopped.i2.c3-5,t3'

every thread of inferior 2, running on cores 3 to 5, but actually
stopped

plus thread 3
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inferior/thread sets specs, examples

[scope TRIGGER-SET] break [-stop STOP-SET] LINESPEC

(gdb) scope t3 break -stop i1 main

(gdb) all> scope i1

Current scope is inferior 1.

(gdb) i1>

(gdb) all> step

(gdb) i1> step

(gdb) t1> step

(gdb) i1> step -p t2,t3

(gdb) i1> step -p c1

(gdb) i1> scope i1,i2 step
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WORLD DOMINATION

Local/Remote feature parity I/T sets Async by default Multi-process Multi-target

Finer grained control of threads

All-stop on top of non-stop

Target can non-stop (done)

Target can async (done)

Pedro Alves (Red Hat) GDB, so where are we now? 2014-02-02 Sun 34 / 55



all-stop vs non-stop modes

user-visible di�erences

target-side / RSP di�erences
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all-stop vs non-stop modes, user visible di�erences

Di�erent user-visible behavior:

All-stop always stops all threads

Non-stop leaves threads running

All-stop always switches current thread to thread that last
stopped

Non-stop never switches the current thread

In non-stop, resumption commands only apply to the current
thread, unless explicitly overriden

In all-stop, what's resumed depends on the
scheduler-locking setting (and more).
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all-stop vs non-stop modes, target backend / RSP

di�erences

In all-stop RSP, resumes are synchronous/blocking

1 → vCont;c (continue)

2 (program continues)

3 ← T05 ... ;thread:999 (stopped with SIGTRAP)

Can't send another packet while the program is running.

Can't insert/remove breakpoints
Can't list threads
Can't inspect globals
Can only explicitly stop target

interrupt request byte 0x03 (no packet structure)

Or . . . wait for the target to stop itself
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Non-stop RSP, asynchronous noti�cations

Asynchronous noti�cations!

Initiated by the server

Can be sent at any time, even when target is running

Just like other packets but start with `%' instead of `$'
(at the frame level)

Currently de�ned:

%Stop: <regular stop reply here>
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Non-stop resumptions

In the non-stop RSP variant, resumes are asynchronous

Other RSP tra�c possible while the target is running!

Example (insert breakpoint while program is running)

1 → vCont;c (continue all threads)

2 ← OK (immediate reply) (program continues)

3 → Z0 <addr1> (Insert breakpoint)

4 ← OK

5 (program eventually hits breakpoint)

6 ← %Stop:T05 ... ;thread:999 (stopped with SIGTRAP)
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WORLD DOMINATION

Local/Remote feature parity I/T sets Async by default Multi-process Multi-target

Finer grained control of threads

All-stop on top of non-stop

Target can non-stop (done)

Target can async (done)
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All-stop UI on top of non-stop target

What:

always connect using the non-stop RSP variant

present the all-stop behavior to the user

Why:

Just one speci�c case in an i/t sets world � useful as incremental
milestone.

Allows true remote async
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sync mode (what we always had by default)

Wait for user

Remove breakpoints

Done?

Insert breakpoints

Step or Continue

Wait for target

No Yes
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async mode (not the default yet)

Wait for event

Remove breakpoints

Insert breakpoints

Step/Continue

No
Yes

Done?

Execution?
Yes

No

Command

stdin target
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async mode (not the default yet)

(gdb) c&

Asynchronous execution not supported on this target.

(gdb) set target-async on

info threads

Id Target Id Frame

3 Thread 11457 0x004ba6ed in foo () at foo.c:82

2 Thread 11456 0x004ba6ed in foo () at foo.c:82

* 1 Thread 11452 0x00408e60 in bar () at bar.c:93

(gdb) c&

Continuing.

(gdb) info threads

Id Target Id Frame

3 Thread 11457 (running)

2 Thread 11456 (running)

* 1 Thread 11452 (running)

(gdb) interrupt ...
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multi-process debugging

Can debug several GNU/Linux programs under the same GDB
session since �7.2.

Working on scalability now
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WORLD DOMINATION

Local/Remote feature parity I/T sets Async by default Multi-process Multi-target

Finer grained control of threads

All-stop on top of non-stop

Target can non-stop (done)

Target can async (done)
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multi-target

Make it possible for users to connect to multiple targets at once:

connect to multiple GDBservers at the same time

freely mix native, remote, and core-�le debugging

https://sourceware.org/gdb/wiki/MultiTarget
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multi-target

The branch is already functional

Lots of global state needed to cleaned up. Some more to go.

Native GNU/Linux X
Core support X
Remote almost
all others. . . . X

Target stack design

User-interface not fully baked yet
add-inferior -new-target

Change GDB to handle the same PID coming from multiple
targets.

Needs target-async
can't block waiting for a single remote �le descriptor

The usual: tests and documentation
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Topic

1 Introduction

2 GDBserver

3 Remote Serial Protocol

4 Local vs remote feature parity

5 I/t sets

6 All-stop vs non-stop modes

7 All-stop UI on top of non-stop target

8 Target async by default

9 Multi-process debugging

10 Multi-target

11 Reverse debugging

12 End
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Running programs backwards

Commands

reverse-step{,stepi,next,nexti,finish}, rc, rs, rsi, rni
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Running programs backwards

w/ `target remote' ⇒ target does the hard work

Often simulators/emulators
Only two packets necessary:

`bc' - backward continue
`bs' - backward step
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Running programs backwards

Built-in process record and replay
�full� version:

allows replaying and reverse execution
force single-stepping, parses instructions, records e�ects
slow
single-threaded only
slow
x86/x86-64 GNU/Linux
slow
ARM GNU/Linux improved in 7.7 (syscall instruction recording,
thumb32)

Intel's branch trace (btrace) recording (GDB mainline)

h/w assisted (Branch Trace Store / BTS)
per-thread branch trace
does not record data
allows limited replay and reverse execution
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Topic

1 Introduction

2 GDBserver

3 Remote Serial Protocol

4 Local vs remote feature parity

5 I/t sets

6 All-stop vs non-stop modes

7 All-stop UI on top of non-stop target

8 Target async by default

9 Multi-process debugging

10 Multi-target

11 Reverse debugging

12 End
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End

Questions

<palves@redhat.com>
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