
GDB, so where are we now?
Status of GDB's ongoing target and run control projects.

Pedro Alves

Red Hat

2014-02-02 Sun

Pedro Alves (Red Hat) GDB, so where are we now? 2014-02-02 Sun 1 / 55

Outline

1 Introduction

2 GDBserver

3 Remote Serial Protocol

4 Local vs remote feature parity

5 I/t sets

6 All-stop vs non-stop modes

7 All-stop UI on top of non-stop target

8 Target async by default

9 Multi-process debugging

10 Multi-target

11 Reverse debugging

12 End

Pedro Alves (Red Hat) GDB, so where are we now? 2014-02-02 Sun 2 / 55

Topic

1 Introduction

2 GDBserver

3 Remote Serial Protocol

4 Local vs remote feature parity

5 I/t sets

6 All-stop vs non-stop modes

7 All-stop UI on top of non-stop target

8 Target async by default

9 Multi-process debugging

10 Multi-target

11 Reverse debugging

12 End

Pedro Alves (Red Hat) GDB, so where are we now? 2014-02-02 Sun 3 / 55

License

License: Attribution-ShareAlike 4.0 Unported (CC BY-SA 4.0)

http://creativecommons.org/licenses/by-sa/4.0/

Pedro Alves (Red Hat) GDB, so where are we now? 2014-02-02 Sun 4 / 55

http://creativecommons.org/licenses/by-sa/4.0/

Current mess

set non-stop on/o�

set target-async on/o�

set scheduler-locking on/of/step

set schedule-multiple on/o�

`target remote' vs `target extended-remote'

Pedro Alves (Red Hat) GDB, so where are we now? 2014-02-02 Sun 5 / 55

Where we're headed

WORLD DOMINATION

Local/Remote feature parity I/T sets Async by default Multi-process Multi-target

Finer grained control of threads

All-stop on top of non-stop

Target can non-stop (done)

Target can async (done)

Pedro Alves (Red Hat) GDB, so where are we now? 2014-02-02 Sun 6 / 55

Topic

1 Introduction

2 GDBserver

3 Remote Serial Protocol

4 Local vs remote feature parity

5 I/t sets

6 All-stop vs non-stop modes

7 All-stop UI on top of non-stop target

8 Target async by default

9 Multi-process debugging

10 Multi-target

11 Reverse debugging

12 End

Pedro Alves (Red Hat) GDB, so where are we now? 2014-02-02 Sun 7 / 55

GDBserver, what's that?

For native/local debugging on the host, GDB alone is su�cient.

spawn processes (�run�)
attach to existing processes

Pedro Alves (Red Hat) GDB, so where are we now? 2014-02-02 Sun 8 / 55

GDBserver, how's that?

For remote / cross debugging, GDB connects to something on
the target end.

bare metal embedded systems → remote stub, debug probe.

emulators → builtin RSP implementation

GNU/Linux (and others) → the GDBserver program.

Pedro Alves (Red Hat) GDB, so where are we now? 2014-02-02 Sun 9 / 55

GDBserver, basic usage

GDBserver

$ gdbserver :9999 a.out

Process /tmp/a.out created; pid = 22952

Listening on port 9999

GDB

$ gdb /tmp/a.out

Reading symbols from /tmp/a.out...done.

(gdb) target remote :9999

Remote debugging using :9999

0x000000323d001530 in _start () from \

/lib64/ld-linux-x86-64.so.2

(gdb)

Pedro Alves (Red Hat) GDB, so where are we now? 2014-02-02 Sun 10 / 55

Topic

1 Introduction

2 GDBserver

3 Remote Serial Protocol

4 Local vs remote feature parity

5 I/t sets

6 All-stop vs non-stop modes

7 All-stop UI on top of non-stop target

8 Target async by default

9 Multi-process debugging

10 Multi-target

11 Reverse debugging

12 End

Pedro Alves (Red Hat) GDB, so where are we now? 2014-02-02 Sun 11 / 55

Remote Serial Protocol (RSP)

Client/Server model
GDB == Client

runs on the host

Target == Server

Variety of transports

Serial
TCP/IP
UDP/IP
POSIX pipes

Pedro Alves (Red Hat) GDB, so where are we now? 2014-02-02 Sun 12 / 55

Remote Serial Protocol (RSP)

Client/Server model
GDB == Client

runs on the host

Target == Server

Variety of transports

Serial
TCP/IP
UDP/IP
POSIX pipes

Pedro Alves (Red Hat) GDB, so where are we now? 2014-02-02 Sun 12 / 55

Remote Serial Protocol (RSP)

(Mostly) text-based
1 ⇒ m aa55aa55,4 (read 4 bytes at 0xaa55aa55)
2 ⇐ ff00ff00 (here's your bytes)
3 ⇒ Z0 0x1234 (insert breakpoint at 0x1234)
4 ⇐ OK
5 Frame format:

`$' packet-data `#' checksum

Try `(gdb) set debug remote 1' to see all the RSP tra�c.

https://sourceware.org/gdb/onlinedocs/gdb/Remote-Protocol.html

Pedro Alves (Red Hat) GDB, so where are we now? 2014-02-02 Sun 13 / 55

https://sourceware.org/gdb/onlinedocs/gdb/Remote-Protocol.html

Topic

1 Introduction

2 GDBserver

3 Remote Serial Protocol

4 Local vs remote feature parity

5 I/t sets

6 All-stop vs non-stop modes

7 All-stop UI on top of non-stop target

8 Target async by default

9 Multi-process debugging

10 Multi-target

11 Reverse debugging

12 End

Pedro Alves (Red Hat) GDB, so where are we now? 2014-02-02 Sun 14 / 55

WORLD DOMINATION

Local/Remote feature parity I/T sets Async by default Multi-process Multi-target

Finer grained control of threads

All-stop on top of non-stop

Target can non-stop (done)

Target can async (done)

Pedro Alves (Red Hat) GDB, so where are we now? 2014-02-02 Sun 15 / 55

Local vs remote debugging

Should be transparent, right?

Pedro Alves (Red Hat) GDB, so where are we now? 2014-02-02 Sun 15 / 55

I wish it were so

Local/Remote feature set comparison

GDB (native) GDBserver

base
debugging

tracepoints / IPAcatch syscall

fork/vfork/exec
following

globbing / parameter
expansion

(...)

can link to
libthread_db statically

access memory of
running thread

(...)

thread names

Pedro Alves (Red Hat) GDB, so where are we now? 2014-02-02 Sun 16 / 55

GDBserver, in blocks

GDB

interpreters

CLI MI (others)

language

C / C++ / ObjC /
Ada / Fortran /

Go / D / ...

target interface

RSP client
(target remote)

Simulator
(target sim)

executable

core dump

RSP
server

breakpoints

tracepoints

execution
control

target interface

native target
(ptrace on GNU/Linux,

Win32 debug API,
etc.)

GDBserver

breakpoint

(break, watch
catch, trace)

execution
control

stack / frame
analysis

symbol handling

(DWARF/ELF/etc.)

architecture

x86 / ARM
Aarch64 / MIPS /

SPARC / Alpha / ...

native target
(ptrace on GNU/Linux,

Win32 debug API,
etc.)

Pedro Alves (Red Hat) GDB, so where are we now? 2014-02-02 Sun 17 / 55

Surprise, we love code duplication

GDBserver's native target code != GDB's native target code
GDB

interpreters

CLI MI (others)

language

C / C++ / ObjC /
Ada / Fortran /

Go / D / ...

target interface

RSP client
(target remote)

Simulator
(target sim)

executable

core dump

RSP
server

breakpoints

tracepoints

execution
control

target interface

native target
(ptrace on GNU/Linux,

Win32 debug API,
etc.)

GDBserver

breakpoint

(break, watch
catch, trace)

execution
control

stack / frame
analysis

symbol handling

(DWARF/ELF/etc.)

architecture

x86 / ARM
Aarch64 / MIPS /

SPARC / Alpha / ...

native target
(ptrace on GNU/Linux,

Win32 debug API,
etc.)

Pedro Alves (Red Hat) GDB, so where are we now? 2014-02-02 Sun 18 / 55

Bright idea

Gosh, we could share all that code, couldn't we?

Pedro Alves (Red Hat) GDB, so where are we now? 2014-02-02 Sun 19 / 55

GDBserver-only features

tracepoints

fast tracepoints / in-process agent (IPA)

can access memory of running thread

other libcs (uCLinux/uClibc, Android, etc.)

static libthread_db.a, no libthread_db at all.

misc others

Pedro Alves (Red Hat) GDB, so where are we now? 2014-02-02 Sun 20 / 55

Native-only features, part 1

fork/vfork/exec

set follow-fork-mode (child/parent)
catch fork/vfork/exec

catch syscall

`(gdb) set environment FOO=bar'

set inferior cwd

(gdb) cd somewhere
(gdb) pwd

Pedro Alves (Red Hat) GDB, so where are we now? 2014-02-02 Sun 21 / 55

Native-only features, part 2

use shell to start program (globbing, wildcard expansion and I/O
redirection)

Native

$ gdb /usr/bin/ls

(gdb) run *

Starting program: /usr/bin/ls *

1 2

[Inferior 1 (process 4750) exited normally]

GDBserver

Process /usr/bin/ls created; pid = 5260

/usr/bin/ls: cannot access *: No such file or directory

Child exited with status 2

Pedro Alves (Red Hat) GDB, so where are we now? 2014-02-02 Sun 22 / 55

Native-only features, part 3

GDB can set/show (user de�ned) thread names:

Example (Thread names)

(gdb) info threads

Id Target Id Frame

* 1 Thread 0x77fc9740 (LWP 932) "foo" main () at foo.c:29

^^^

(gdb) thread name bar

^^^

(gdb) info threads

Id Target Id Frame

* 1 Thread 0x77fc9740 (LWP 932) "bar" main () at foo.c:29

^^^

(gdb)

Pedro Alves (Red Hat) GDB, so where are we now? 2014-02-02 Sun 23 / 55

Yet more missing features when remote debugging

Others:

Attach auto-load exec
Graceful handling of leader thread exiting
Inferior IO

More. . .

Pedro Alves (Red Hat) GDB, so where are we now? 2014-02-02 Sun 24 / 55

Other di�erences

Synching inferior thread list needs explicit �info threads�.

�info threads� output di�erent between native/remote:

GDB

(gdb) info threads

Id Target Id Frame

* 1 Thread 0x7ffff7fcc740 (LWP 19056) "test" main ()

at test.c:35

GDBserver

(gdb) info threads

Id Target Id Frame

* 1 Thread 19056 main () at test.c:35

Pedro Alves (Red Hat) GDB, so where are we now? 2014-02-02 Sun 25 / 55

Current direction

1 GDBserver > GDB (targets backends)

2 Drop GDB's backends

Project is tracked here:
https://sourceware.org/gdb/wiki/LocalRemoteFeatureParity

Related:
https://sourceware.org/gdb/wiki/Common

Pedro Alves (Red Hat) GDB, so where are we now? 2014-02-02 Sun 26 / 55

https://sourceware.org/gdb/wiki/LocalRemoteFeatureParity
https://sourceware.org/gdb/wiki/Common

Topic

1 Introduction

2 GDBserver

3 Remote Serial Protocol

4 Local vs remote feature parity

5 I/t sets

6 All-stop vs non-stop modes

7 All-stop UI on top of non-stop target

8 Target async by default

9 Multi-process debugging

10 Multi-target

11 Reverse debugging

12 End

Pedro Alves (Red Hat) GDB, so where are we now? 2014-02-02 Sun 27 / 55

WORLD DOMINATION

Local/Remote feature parity I/T sets Async by default Multi-process Multi-target

Finer grained control of threads

All-stop on top of non-stop

Target can non-stop (done)

Target can async (done)

Pedro Alves (Red Hat) GDB, so where are we now? 2014-02-02 Sun 28 / 55

inferior/thread sets, history 1

Currently GDB can debug:

multi-threaded programs

programs composed of multiple processes

By default:

any event triggers in the debugged program ⇒ all threads stop

Pedro Alves (Red Hat) GDB, so where are we now? 2014-02-02 Sun 28 / 55

inferior/thread sets, history 2

Too intrusive when debugging live running systems

Enter non-stop mode (GDB 7.0)

Keep all threads running, except the thread that hit the event

[The old (and default) mode was named the all-stop mode]

Pedro Alves (Red Hat) GDB, so where are we now? 2014-02-02 Sun 29 / 55

inferior/thread sets, history 3

All or nothing. . .

Not �exible enough.

Desirable to group related threads, and apply group actions, e.g.:

step, continue, etc.

set breakpoints speci�c to said groups or sets

specify what should be implicitly paused when a breakpoint
triggers

Pedro Alves (Red Hat) GDB, so where are we now? 2014-02-02 Sun 30 / 55

inferior/thread sets, specs

collection/combination of execution/scoping objects:
inferiors/processes, threads, cores, Ada tasks, etc.

ranges and wildards
assignable names
union (,) and intersection (.) operators
set negation (�)
refer to current and/or future entities
prede�ned sets:

all threads, all running, all stopped, etc.

Example (a spec)

`stopped.i2.c3-5,t3'

every thread of inferior 2, running on cores 3 to 5, but actually
stopped

plus thread 3
Pedro Alves (Red Hat) GDB, so where are we now? 2014-02-02 Sun 31 / 55

inferior/thread sets specs, examples

[scope TRIGGER-SET] break [-stop STOP-SET] LINESPEC

(gdb) scope t3 break -stop i1 main

(gdb) all> scope i1

Current scope is inferior 1.

(gdb) i1>

(gdb) all> step

(gdb) i1> step

(gdb) t1> step

(gdb) i1> step -p t2,t3

(gdb) i1> step -p c1

(gdb) i1> scope i1,i2 step

Pedro Alves (Red Hat) GDB, so where are we now? 2014-02-02 Sun 32 / 55

Topic

1 Introduction

2 GDBserver

3 Remote Serial Protocol

4 Local vs remote feature parity

5 I/t sets

6 All-stop vs non-stop modes

7 All-stop UI on top of non-stop target

8 Target async by default

9 Multi-process debugging

10 Multi-target

11 Reverse debugging

12 End

Pedro Alves (Red Hat) GDB, so where are we now? 2014-02-02 Sun 33 / 55

WORLD DOMINATION

Local/Remote feature parity I/T sets Async by default Multi-process Multi-target

Finer grained control of threads

All-stop on top of non-stop

Target can non-stop (done)

Target can async (done)

Pedro Alves (Red Hat) GDB, so where are we now? 2014-02-02 Sun 34 / 55

all-stop vs non-stop modes

user-visible di�erences

target-side / RSP di�erences

Pedro Alves (Red Hat) GDB, so where are we now? 2014-02-02 Sun 34 / 55

all-stop vs non-stop modes, user visible di�erences

Di�erent user-visible behavior:

All-stop always stops all threads

Non-stop leaves threads running

All-stop always switches current thread to thread that last
stopped

Non-stop never switches the current thread

In non-stop, resumption commands only apply to the current
thread, unless explicitly overriden

In all-stop, what's resumed depends on the
scheduler-locking setting (and more).

Pedro Alves (Red Hat) GDB, so where are we now? 2014-02-02 Sun 35 / 55

all-stop vs non-stop modes, target backend / RSP

di�erences

In all-stop RSP, resumes are synchronous/blocking

1 → vCont;c (continue)

2 (program continues)

3 ← T05 ... ;thread:999 (stopped with SIGTRAP)

Can't send another packet while the program is running.

Can't insert/remove breakpoints
Can't list threads
Can't inspect globals
Can only explicitly stop target

interrupt request byte 0x03 (no packet structure)

Or . . . wait for the target to stop itself

Pedro Alves (Red Hat) GDB, so where are we now? 2014-02-02 Sun 36 / 55

all-stop vs non-stop modes, target backend / RSP

di�erences

In all-stop RSP, resumes are synchronous/blocking

1 → vCont;c (continue)

2 (program continues)

3 ← T05 ... ;thread:999 (stopped with SIGTRAP)

Can't send another packet while the program is running.

Can't insert/remove breakpoints
Can't list threads
Can't inspect globals
Can only explicitly stop target

interrupt request byte 0x03 (no packet structure)

Or . . . wait for the target to stop itself

Pedro Alves (Red Hat) GDB, so where are we now? 2014-02-02 Sun 36 / 55

all-stop vs non-stop modes, target backend / RSP

di�erences

In all-stop RSP, resumes are synchronous/blocking

1 → vCont;c (continue)

2 (program continues)

3 ← T05 ... ;thread:999 (stopped with SIGTRAP)

Can't send another packet while the program is running.

Can't insert/remove breakpoints
Can't list threads
Can't inspect globals
Can only explicitly stop target

interrupt request byte 0x03 (no packet structure)

Or . . . wait for the target to stop itself

Pedro Alves (Red Hat) GDB, so where are we now? 2014-02-02 Sun 36 / 55

all-stop vs non-stop modes, target backend / RSP

di�erences

In all-stop RSP, resumes are synchronous/blocking

1 → vCont;c (continue)

2 (program continues)

3 ← T05 ... ;thread:999 (stopped with SIGTRAP)

Can't send another packet while the program is running.

Can't insert/remove breakpoints
Can't list threads
Can't inspect globals
Can only explicitly stop target

interrupt request byte 0x03 (no packet structure)

Or . . . wait for the target to stop itself

Pedro Alves (Red Hat) GDB, so where are we now? 2014-02-02 Sun 36 / 55

Non-stop RSP, asynchronous noti�cations

Asynchronous noti�cations!

Initiated by the server

Can be sent at any time, even when target is running

Just like other packets but start with `%' instead of `$'
(at the frame level)

Currently de�ned:

%Stop: <regular stop reply here>

Pedro Alves (Red Hat) GDB, so where are we now? 2014-02-02 Sun 37 / 55

Non-stop resumptions

In the non-stop RSP variant, resumes are asynchronous

Other RSP tra�c possible while the target is running!

Example (insert breakpoint while program is running)

1 → vCont;c (continue all threads)

2 ← OK (immediate reply) (program continues)

3 → Z0 <addr1> (Insert breakpoint)

4 ← OK

5 (program eventually hits breakpoint)

6 ← %Stop:T05 ... ;thread:999 (stopped with SIGTRAP)

Pedro Alves (Red Hat) GDB, so where are we now? 2014-02-02 Sun 38 / 55

Non-stop resumptions

In the non-stop RSP variant, resumes are asynchronous

Other RSP tra�c possible while the target is running!

Example (insert breakpoint while program is running)

1 → vCont;c (continue all threads)

2 ← OK (immediate reply) (program continues)

3 → Z0 <addr1> (Insert breakpoint)

4 ← OK

5 (program eventually hits breakpoint)

6 ← %Stop:T05 ... ;thread:999 (stopped with SIGTRAP)

Pedro Alves (Red Hat) GDB, so where are we now? 2014-02-02 Sun 38 / 55

Non-stop resumptions

In the non-stop RSP variant, resumes are asynchronous

Other RSP tra�c possible while the target is running!

Example (insert breakpoint while program is running)

1 → vCont;c (continue all threads)

2 ← OK (immediate reply) (program continues)

3 → Z0 <addr1> (Insert breakpoint)

4 ← OK

5 (program eventually hits breakpoint)

6 ← %Stop:T05 ... ;thread:999 (stopped with SIGTRAP)

Pedro Alves (Red Hat) GDB, so where are we now? 2014-02-02 Sun 38 / 55

Non-stop resumptions

In the non-stop RSP variant, resumes are asynchronous

Other RSP tra�c possible while the target is running!

Example (insert breakpoint while program is running)

1 → vCont;c (continue all threads)

2 ← OK (immediate reply) (program continues)

3 → Z0 <addr1> (Insert breakpoint)

4 ← OK

5 (program eventually hits breakpoint)

6 ← %Stop:T05 ... ;thread:999 (stopped with SIGTRAP)

Pedro Alves (Red Hat) GDB, so where are we now? 2014-02-02 Sun 38 / 55

Non-stop resumptions

In the non-stop RSP variant, resumes are asynchronous

Other RSP tra�c possible while the target is running!

Example (insert breakpoint while program is running)

1 → vCont;c (continue all threads)

2 ← OK (immediate reply) (program continues)

3 → Z0 <addr1> (Insert breakpoint)

4 ← OK

5 (program eventually hits breakpoint)

6 ← %Stop:T05 ... ;thread:999 (stopped with SIGTRAP)

Pedro Alves (Red Hat) GDB, so where are we now? 2014-02-02 Sun 38 / 55

Non-stop resumptions

In the non-stop RSP variant, resumes are asynchronous

Other RSP tra�c possible while the target is running!

Example (insert breakpoint while program is running)

1 → vCont;c (continue all threads)

2 ← OK (immediate reply) (program continues)

3 → Z0 <addr1> (Insert breakpoint)

4 ← OK

5 (program eventually hits breakpoint)

6 ← %Stop:T05 ... ;thread:999 (stopped with SIGTRAP)

Pedro Alves (Red Hat) GDB, so where are we now? 2014-02-02 Sun 38 / 55

Non-stop resumptions

In the non-stop RSP variant, resumes are asynchronous

Other RSP tra�c possible while the target is running!

Example (insert breakpoint while program is running)

1 → vCont;c (continue all threads)

2 ← OK (immediate reply) (program continues)

3 → Z0 <addr1> (Insert breakpoint)

4 ← OK

5 (program eventually hits breakpoint)

6 ← %Stop:T05 ... ;thread:999 (stopped with SIGTRAP)

Pedro Alves (Red Hat) GDB, so where are we now? 2014-02-02 Sun 38 / 55

Non-stop resumptions

In the non-stop RSP variant, resumes are asynchronous

Other RSP tra�c possible while the target is running!

Example (insert breakpoint while program is running)

1 → vCont;c (continue all threads)

2 ← OK (immediate reply) (program continues)

3 → Z0 <addr1> (Insert breakpoint)

4 ← OK

5 (program eventually hits breakpoint)

6 ← %Stop:T05 ... ;thread:999 (stopped with SIGTRAP)

Pedro Alves (Red Hat) GDB, so where are we now? 2014-02-02 Sun 38 / 55

Topic

1 Introduction

2 GDBserver

3 Remote Serial Protocol

4 Local vs remote feature parity

5 I/t sets

6 All-stop vs non-stop modes

7 All-stop UI on top of non-stop target

8 Target async by default

9 Multi-process debugging

10 Multi-target

11 Reverse debugging

12 End

Pedro Alves (Red Hat) GDB, so where are we now? 2014-02-02 Sun 39 / 55

WORLD DOMINATION

Local/Remote feature parity I/T sets Async by default Multi-process Multi-target

Finer grained control of threads

All-stop on top of non-stop

Target can non-stop (done)

Target can async (done)

Pedro Alves (Red Hat) GDB, so where are we now? 2014-02-02 Sun 40 / 55

All-stop UI on top of non-stop target

What:

always connect using the non-stop RSP variant

present the all-stop behavior to the user

Why:

Just one speci�c case in an i/t sets world � useful as incremental
milestone.

Allows true remote async

Pedro Alves (Red Hat) GDB, so where are we now? 2014-02-02 Sun 40 / 55

Topic

1 Introduction

2 GDBserver

3 Remote Serial Protocol

4 Local vs remote feature parity

5 I/t sets

6 All-stop vs non-stop modes

7 All-stop UI on top of non-stop target

8 Target async by default

9 Multi-process debugging

10 Multi-target

11 Reverse debugging

12 End

Pedro Alves (Red Hat) GDB, so where are we now? 2014-02-02 Sun 41 / 55

WORLD DOMINATION

Local/Remote feature parity I/T sets Async by default Multi-process Multi-target

Finer grained control of threads

All-stop on top of non-stop

Target can non-stop (done)

Target can async (done)

Pedro Alves (Red Hat) GDB, so where are we now? 2014-02-02 Sun 42 / 55

sync mode (what we always had by default)

Wait for user

Remove breakpoints

Done?

Insert breakpoints

Step or Continue

Wait for target

No Yes

Pedro Alves (Red Hat) GDB, so where are we now? 2014-02-02 Sun 42 / 55

async mode (not the default yet)

Wait for event

Remove breakpoints

Insert breakpoints

Step/Continue

No
Yes

Done?

Execution?
Yes

No

Command

stdin target

Pedro Alves (Red Hat) GDB, so where are we now? 2014-02-02 Sun 43 / 55

async mode (not the default yet)

(gdb) c&

Asynchronous execution not supported on this target.

(gdb) set target-async on

info threads

Id Target Id Frame

3 Thread 11457 0x004ba6ed in foo () at foo.c:82

2 Thread 11456 0x004ba6ed in foo () at foo.c:82

* 1 Thread 11452 0x00408e60 in bar () at bar.c:93

(gdb) c&

Continuing.

(gdb) info threads

Id Target Id Frame

3 Thread 11457 (running)

2 Thread 11456 (running)

* 1 Thread 11452 (running)

(gdb) interrupt ...

Pedro Alves (Red Hat) GDB, so where are we now? 2014-02-02 Sun 44 / 55

Topic

1 Introduction

2 GDBserver

3 Remote Serial Protocol

4 Local vs remote feature parity

5 I/t sets

6 All-stop vs non-stop modes

7 All-stop UI on top of non-stop target

8 Target async by default

9 Multi-process debugging

10 Multi-target

11 Reverse debugging

12 End

Pedro Alves (Red Hat) GDB, so where are we now? 2014-02-02 Sun 45 / 55

WORLD DOMINATION

Local/Remote feature parity I/T sets Async by default Multi-process Multi-target

Finer grained control of threads

All-stop on top of non-stop

Target can non-stop (done)

Target can async (done)

Pedro Alves (Red Hat) GDB, so where are we now? 2014-02-02 Sun 46 / 55

multi-process debugging

Can debug several GNU/Linux programs under the same GDB
session since �7.2.

Working on scalability now

Pedro Alves (Red Hat) GDB, so where are we now? 2014-02-02 Sun 46 / 55

Topic

1 Introduction

2 GDBserver

3 Remote Serial Protocol

4 Local vs remote feature parity

5 I/t sets

6 All-stop vs non-stop modes

7 All-stop UI on top of non-stop target

8 Target async by default

9 Multi-process debugging

10 Multi-target

11 Reverse debugging

12 End

Pedro Alves (Red Hat) GDB, so where are we now? 2014-02-02 Sun 47 / 55

WORLD DOMINATION

Local/Remote feature parity I/T sets Async by default Multi-process Multi-target

Finer grained control of threads

All-stop on top of non-stop

Target can non-stop (done)

Target can async (done)

Pedro Alves (Red Hat) GDB, so where are we now? 2014-02-02 Sun 48 / 55

multi-target

Make it possible for users to connect to multiple targets at once:

connect to multiple GDBservers at the same time

freely mix native, remote, and core-�le debugging

https://sourceware.org/gdb/wiki/MultiTarget

Pedro Alves (Red Hat) GDB, so where are we now? 2014-02-02 Sun 48 / 55

https://sourceware.org/gdb/wiki/MultiTarget

multi-target

The branch is already functional

Lots of global state needed to cleaned up. Some more to go.

Native GNU/Linux X
Core support X
Remote almost
all others. . . . X

Target stack design

User-interface not fully baked yet
add-inferior -new-target

Change GDB to handle the same PID coming from multiple
targets.

Needs target-async
can't block waiting for a single remote �le descriptor

The usual: tests and documentation
Pedro Alves (Red Hat) GDB, so where are we now? 2014-02-02 Sun 49 / 55

Topic

1 Introduction

2 GDBserver

3 Remote Serial Protocol

4 Local vs remote feature parity

5 I/t sets

6 All-stop vs non-stop modes

7 All-stop UI on top of non-stop target

8 Target async by default

9 Multi-process debugging

10 Multi-target

11 Reverse debugging

12 End

Pedro Alves (Red Hat) GDB, so where are we now? 2014-02-02 Sun 50 / 55

Running programs backwards

Commands

reverse-step{,stepi,next,nexti,finish}, rc, rs, rsi, rni

Pedro Alves (Red Hat) GDB, so where are we now? 2014-02-02 Sun 51 / 55

Running programs backwards

w/ `target remote' ⇒ target does the hard work

Often simulators/emulators
Only two packets necessary:

`bc' - backward continue
`bs' - backward step

Pedro Alves (Red Hat) GDB, so where are we now? 2014-02-02 Sun 52 / 55

Running programs backwards

Built-in process record and replay
�full� version:

allows replaying and reverse execution
force single-stepping, parses instructions, records e�ects
slow
single-threaded only
slow
x86/x86-64 GNU/Linux
slow
ARM GNU/Linux improved in 7.7 (syscall instruction recording,
thumb32)

Intel's branch trace (btrace) recording (GDB mainline)

h/w assisted (Branch Trace Store / BTS)
per-thread branch trace
does not record data
allows limited replay and reverse execution

Pedro Alves (Red Hat) GDB, so where are we now? 2014-02-02 Sun 53 / 55

Topic

1 Introduction

2 GDBserver

3 Remote Serial Protocol

4 Local vs remote feature parity

5 I/t sets

6 All-stop vs non-stop modes

7 All-stop UI on top of non-stop target

8 Target async by default

9 Multi-process debugging

10 Multi-target

11 Reverse debugging

12 End

Pedro Alves (Red Hat) GDB, so where are we now? 2014-02-02 Sun 54 / 55

End

Questions

<palves@redhat.com>

Pedro Alves (Red Hat) GDB, so where are we now? 2014-02-02 Sun 55 / 55

	Introduction
	GDBserver
	Remote Serial Protocol
	Local vs remote feature parity
	I/t sets
	All-stop vs non-stop modes
	All-stop UI on top of non-stop target
	Target async by default
	Multi-process debugging
	Multi-target
	Reverse debugging
	End

