
Research on an Open-Source Software Platform

for Autonomous Driving Systems

Lukas Bulwahn, Tilmann Ochs and Daniel Wagner
BMW Car IT GmbH

Petuelring 116, 80809 Munich, Germany
firstname.lastname@bmw-carit.de

October 9, 2013

Abstract

The next larger step in automotive development will be towards autonomously driving cars. Au-
tonomous driving will be a highly complex and safety-related function in future vehicles, and current
software platforms are not adequate for this function. We present our ongoing research on an open-source
software platform for autonomous driving software systems.

From our experience with use cases of existing driver assistance systems and research projects, we
derive requirements on the software platform. We motivate the advantages of open-source development
over proprietary development and provide arguments for an open-source qualified (open-proof) software
platform. Furthermore, we propose an architecture for the software platform based on the Linux operating
system and other open-source software. This architecture fulfills the requirements and makes development
and qualification of such systems efficient.

1 Introduction

In the sixties, car manufacturers built first electronic
driver assistance systems, such as anti-lock braking
systems, into cars. With the continuous development
of micro-electronics and computer technology, those
systems became more and more sophisticated.

The imminent next step in this development is
the advent of partially automated driving systems,
which control the cars automatically in certain traf-
fic situations. However, even while these systems
control the cars, the human drivers remain responsi-
ble for monitoring those systems and taking control
if necessary.

Current long-term research, in contrast, is tar-
geting autonomous driving systems, which are able to
handle any possible traffic and emergency situation
safely without relying on human supervision. These
systems have two seemingly contradicting character-
istics: first, they must be verifiably highly reliable,

because malfunctions could endanger passengers and
other traffic participants; and second, they consist
of complex and computing-intensive application soft-
ware components.

These two characteristics make autonomous
driving systems belong to a new class of safety-
related systems, because “keeping it stupid simple”
is limited by the inherent complexity of reaching a
safe state in the case of malfunctions while driving
autonomously. Given the current and future road in-
frastructure, reaching a safe state means pulling over
a car with situation-dependent speed to a safe sta-
tionary state on every road in every condition in the
event of a single safety-related system malfunction.
Due to our initial experience with autonomous driv-
ing systems, we assume that this inherent complex-
ity will require hardware and software platforms that
support more complex application software and pro-
vide a much higher computational throughput than
the current rather simple, highly reliable, automotive
software systems, such as airbag control systems.

1



Such an autonomous driving system is built up
from a network of redundant electronic control units
that are connected to the vehicle’s sensors and vehi-
cle’s actuators through a highly reliable, adequately
reactive vehicle network.

In this paper, we assume that such a network
can be provided and we consider only the require-
ments and properties of a single electronic control
unit in an autonomous driving system. A single elec-
tronic control unit embodies the functionalities for
autonomous driving that are mainly implemented in
software, such as high-level recognition of traffic sit-
uations, prediction of other traffic participant’s be-
havior, planning of the vehicle’s maneuver and com-
putation of the desired trajectory.

In this paper, we further focus on the software
architecture for this electronic control unit. The
techniques and implementation of the main cognitive
software functions for autonomous driving is not of
interest here; only the requirements they set on the
software architecture are important.

The software architecture can be decomposed
into two layers: The upper application software layer
contains the main cognitive software functions for au-
tonomous driving. The lower software platform layer
provides basic services, e.g., communication between
the software functions and abstraction of the con-
crete computing hardware. Throughout this paper,
the term “platform” refers to this software platform
layer and shall be read as “software platform”.

In the following sections, we present ongoing re-
search on a software platform that is based on open-
source software1. First, we discuss the characteristic
requirements of a platform for autonomous driving
(§2). Second, we present arguments for the advan-
tages of an open-source development of safety-related
software in this context and the prospected impact
on the style of development (§3). Third, we sketch
the platform architecture based on an open-source
Linux operating system (§4). At the end, we present
further related work and summarize our findings.

2 Platform Requirements

Future autonomous driving software will implement
algorithms for computer vision and artificial intelli-
gence beyond the current state of the art. Currently,
all parties engaged in autonomous driving work on
prototypes to address the various challenges in this
field, but no one has finalized a software product de-
velopment for the general public.

As definite requirements for the platform consol-
idate only during the product development, a def-
inite specification of the platform for autonomous
driving cannot be presented. To derive an initial
set of requirements for a platform despite the ongo-
ing product development, we extrapolated resource
demands and use cases from existing systems and re-
search projects [11]. This initial set of requirements
indicates that the software is complex, computing
intensive, safety related, time sensitive, volatile and
automotive specific. We elaborate on the require-
ments concerning these six aspects:

Complexity. Software in research projects for au-
tonomous driving and robotics have tens of thou-
sands lines of code and make use of complex and
dynamic data structures, such as graphs or sparse
matrices. To support the software development, the
platform shall provide

– integration of loosely coupled application software
components to minimize covert interference,

– a rich interface definition language to specify appli-
cation software component interfaces unambigu-
ously,

– high-level programming languages to reduce code
complexity, and

– mainstream software engineering methods and
tools to leverage experiences and developments
from the general IT industry.

Computing Performance. Research projects for
autonomous driving and robotics use modern per-
sonal computers to its full capacity. This indi-
cates memory consumption in the range of Giga-
bytes, CPU consumption in the range of GFLOPS
and heavy use of hardware acceleration. Hence, the
platform shall provide

– a hardware-independent programming interface
for acceleration hardware to port application soft-
ware components easily,

– symmetric multiprocessing to leverage component-
level parallelism on mainstream processors, and

– performance-optimized processor architectures to
maximize computational throughput.

1We use “open source” as shorthand for “free/libre and open source” with the same meaning as in the acronym FLOSS.

2



Safety. Autonomous driving is a safety-related
function, as malfunctions may lead to collisions and
cause harm to passengers and other traffic partici-
pants. To assure safe operation, a safety concept is
defined on the vehicle level and decomposed to de-
rive safety requirements for all relevant vehicle com-
ponents. Following the automotive standard for de-
velopment of safety-related systems, ISO 26262 [16],
vehicle components are classified with four integrity
levels, from lowest Automotive Safety Integrity Level
(ASIL) A to highest level ASIL D, depending on the
consequences of failures.

The platform will host application software com-
ponents with different integrity levels and must en-
sure that those with lower integrity level must not
interfere with high-integrity components. Based on
our personal communication with various hardware
vendors, we assume that a platform will at most pro-
vide integrity levels up to ASIL B due to lack of
high-integrity processing hardware with the required
performance. Higher integrity levels will therefore
be realized by vehicle-level redundancy. To execute
safety-related software functions, the platform shall
support

– execution of application software components with
integrity levels up to ASIL B,

– coexistence of application software components
with different integrity level,

– failure detection of hardware and platform soft-
ware components and silent shutdown to support
vehicle-level redundancy,

– misbehavior detection of application software com-
ponents and restart or shutdown of affected com-
ponents to increase robustness,

– control-flow monitoring in application software
components and misbehavior detection,

– data-flow monitoring between application software
components and misbehavior detection, and

– standardized software and error propagation mod-
els to support automated safety analyses.

Time Sensitivity. Autonomous driving systems
have real-time requirements, as outdated environ-
ment data or lagging maneuver planning can lead
to oscillating dynamic behavior and collisions. From
our experience, we assume that a sporadically occur-
ring maximum jitter below 100 microseconds in the
application components does not lead to a hazardous
event. Recent work of the Open Source Automation

Development Lab’s (OSADL) [4] shows that inter-
rupt latency below 100 microseconds can be achieved
on mainstream processing hardware. Hence, the soft-
ware platform shall provide

– deterministic timing behavior with maximal jitter
of 100 microseconds to ensure replicable behavior,

– real-time scheduling to meet timing requirements
of application software, and

– timing behavior monitoring of application soft-
ware components and detection of timing viola-
tions with 100 microseconds tolerance.

Volatility. Research in computer vision and arti-
ficial intelligence will evolve rapidly in the foresee-
able future, and several research projects currently
develop infrastructure for autonomous driving [2, 3].
We assume that car manufacturers have to offer soft-
ware updates through a remote connection to pro-
vide the latest functionality and integration of locally
available infrastructure services. Hence, the platform
shall support

– agile development practices for software compo-
nents to mitigate low concept maturity,

– remote update of application software components
to maintain software continuously,

– a modular safety concept to integrate indepen-
dently developed application software compo-
nents, and

– remote addition and removal of application soft-
ware components to provide extensibility.

Automotive Specifics. Autonomous driving sys-
tems are integrated into vehicle networks, are man-
aged by standardized diagnostic functions, and par-
ticipate in vehicle state and energy management.
Hence, the platform shall support

– standardized diagnostic and vehicle management
functions,

– integration of vendor-specific diagnosis and vehicle
management functions, and

– automotive-specific communication protocols over
Ethernet, CAN or FlexRay.

3



3 Open-Proof Development

Prominent free/libre open-source software (FLOSS)
projects, e.g., the Linux kernel project [23] or the
Apache HTTP server project [6], employ stringent
development processes [7, 18] and deliver software of
very high quality [14], but they do not fulfill the re-
quirements of current safety standards, such as the
ISO 26262 standard for software in automotive sys-
tems, or the EN 50128 standard [15] for software
in railway systems. These standards impose strict
demands on project management, developer qual-
ification, risk management, requirements manage-
ment, quality assurance and documentation. There-
fore, open-source software can not be used in safety-
related systems without further activities.

Nevertheless, it is reasonable to incorporate
open-source software in such systems rather than
re-implementing such general-applicable commodity
software. Currently, there are three endeavors in this
direction, which we call open-proof projects.2

As a first endeavor to allow developers to cre-
ate open-source software for safety-related systems,
Wheeler [24] collects open-source verification tools
and links to existing open-proof projects. It is a pre-
requisite to develop open-proof software, based on
this supposition: To formally prove the correctness
of the software, the developers also deliver formal
specifications and all required artefacts to allow ev-
erybody to check the correctness of the software us-
ing the available open-source verification tools.

The second endeavor also devises an open-source
development process that conforms to the safety
standards. To develop the software kernel for the
European train control system, a highly complex and
safety-related software, Hase initiated the coopera-
tive project OpenETCS [5, 10]. Under the umbrella
of a publicly-funded research project, a consortium
of European rail operators and equipment manufac-
turers is formed that fulfills the organizational and
technical requirements of the EN 50128 safety stan-
dard. The organizational requirements are fulfilled
by dedicated governance rules that restrict contribu-
tions to contracted partners and put obligations on
the staff working on behalf of those companies. The
development process is designed to fulfill the safety
standard and to support the massively distributed
development team. The project also ensures that
the technical documents and artefacts can be edited
and inspected using open-source tools.

The third endeavor addresses the open-source
qualification and certification of existing open-source

software for safety-related systems.

The SIL2LinuxMP project [20] plans to certify
the base components, i.e., boot loader, root filesys-
tem, Linux kernel and C library bindings, of an
embedded GNU/Linux real-time operating systems
compliant to Safety Integrity Level 2 (SIL2) accord-
ing to safety standard IEC 61508 [13], which roughly
corresponds to ISO 26262’s integrity level ASIL B.

In this paper, we propose to compose platform
for complex safety-related application software from
existing open-source software. Furthermore, we pro-
pose to collaborate on the open-source platform and
safety-related activities. The core of our concept is
a stripped configuration of the GNU/Linux operat-
ing system. In our opinion, the development of this
platform in an open-proof approach has several ad-
vantages compared to proprietary solutions:

– Lower cost: Cost for development and qualifica-
tion of this complex platform can be shared.

– Higher quality: One widely-used implementation
matures more quickly, as experience from multiple
use cases can be considered.

– Higher confidence: Risk classification and effec-
tivity of safety measures are publicly assessed and
rated by all partners and potentially also by aca-
demic institutions. This accelerates the process to
define an accepted state of the art.

– Higher agility: Innovative car manufacturers, ap-
plication software developers and integrators who
need additional platform capabilities can collab-
orate on new features, implement in a dedicated
branch and use them in their product develop-
ment, before the changes are integrated in the
main branch.

However, to develop the platform in an open-
proof manner, the companies in the automotive soft-
ware industry must take some organizational actions:
First, the open-proof platform development must be
organized by a consortium of the interested part-
ners and users, similar to the existing AUTOSAR
consortium [1]. Second, the contributing partners
must disclose the development and safety processes
for the platform and make them compatible to each
other. Third, the partners must develop and sign-
off a safety concept and qualification goals for this
platform. Fourth, to allow independent checking of
the verification steps, the partners must provide the
verification tools that were developed for the use of
this project as open-source software. And fifth, to
mature quickly during the development, users of this

2The term open proof has been coined by David A. Wheeler and Klaus-Ruediger Hase.

4



platform must detect, isolate and report bugs and
shortcomings.

Even after the platform’s development has final-
ized, the car manufacturers can benefit from the col-
laborative open-proof approach. Once the platform
is deployed in production vehicles, the car manufac-
turers must monitor the platform’s behavior in the
field. A cooperative monitoring of the common plat-
form has several advantages for the partners: As the
platform is running on numerous cars of multiple car
manufacturers, flaws in the widely-used system are
detected more quickly in the field. Due to legal obli-
gations, all car manufacturers must react if severe
issues are detected. Hence, an immediate public
reporting of severe issues avoids negligence-related
claims and an instantaneous response is proved by
public review of the taken actions in the platform
software repository. Therefore, companies that re-
port and resolve many issues are recognized as ac-
tively rising public safety for autonomous driving.

4 Linux Platform Architecture

In this section, we sketch our proposed architecture
for the platform for autonomous driving and derive
requirements for the Linux operating system.

We presume a mainstream computing hardware
that is well supported by Linux, qualified compliant
to ISO 26262’s ASIL B and for which sufficient real-
time capabilities could be demonstrated, e.g., by the
OSADL testing lab [4]. There are several systems
on chip (SoC) available from several silicon vendors
that fulfill those requirements.

We further assume that the hardware offers the
key features, symmetric multi-processing, hardware
acceleration, e.g. through GPGPUs, Ethernet, CAN
or FlexRay communication, and flash-based mass
storage. We explicitly exclude the availability and
use of application-specific I/O hardware, e.g., GPIO
or analog pins, from the platform’s hardware design
as it increases platform complexity and reduces its
reusability.

Figure 1 depicts the different components of the
platform running on an electronic control unit. The
platform is structured in five parts:

Application Software Components. The de-
sired functionality of an electronic control unit is
implemented in the application software, which is
decomposed into application software components,
following the high-cohesion and loose-coupling prin-

ciple. To achieve loose coupling, application software
components are mapped to separate Linux processes
and their temporal isolation is realized using a real-
time scheduler. Communication between the soft-
ware components is realized using Linux’s efficient
interprocess communication mechanisms.

AUTOSAR Interfaces. To allow reuse of appli-
cation software components and assist commission-
ing in industrial cooperations, all component inter-
faces are defined employing the AUTOSAR software
component template. AUTOSAR provides an estab-
lished standard metamodel, templates and tools, and
a functioning consortium for further extensions. All
properties required for the integration, such as mem-
ory usage, and scheduling, are described with current
AUTOSAR specification templates. Furthermore,
the components’ behavioral characteristics, such as
timing behavior, data and control flow, can be speci-
fied with AUTOSAR means that are currently under
development and on which the future safety concepts
and analyses will rest upon.

Middleware. The middleware interconnects ap-
plication software components and allows them to
access platform, communication and system services.

In existing automotive ECUs, this middleware is
defined by specifications employing the AUTOSAR
metamodel, i.e., the software composition and sys-
tem template defines all interconnections that are
realized by a statically generated middleware soft-
ware, called the AUTOSAR runtime environment.

According to the requirements in §2, the plat-
form for autonomous driving shall dynamically inte-
grate, remove and update application software com-
ponents. This requirement cannot be fulfilled with a
statically generated software, but needs a discovery
mechanism that dynamically establishes communica-
tion links between software components at start-up.
However, this discovery mechanism can be config-
ured using extracts of the specification with the cur-
rent AUTOSAR metamodel. There are two open-
source implementations that could fulfill the main
requirements:

First, the Robot Operating System (ROS), a
framework for robotics applications, provides a dy-
namic middleware with publisher/subscriber com-
munication and a remote-procedure-call mechanism.
It was initially developed in academia, but recently
also industrial users are engaged to prepare ROS for
use in products. It does not provide guaranteed tim-
ing behavior and dependable communication yet, but
its community plans to address this in the future.

5



Figure 1: Software platform architecture

Second, OpenDDS is an open-source implemen-
tation of the Data Distribution Service for Real-Time
Systems (DDS). DDS is a standard for interoperable
data exchanges and focuses on scalability, guaran-
teed timing behavior, dependability and high perfor-
mance. It is future work to evaluate if the OpenDDS
implementation fits the needs for a middleware of the
platform.

To employ those frameworks in the platform,
they must be augmented by control software that
configures the middleware with the provided AUTO-
SAR descriptions.

Platform Services. Platform services are local
services that are required to execute application and
platform software components. Supported services
are CPU scheduling, process isolation, flash storage
access, or platform health monitoring. CPU schedul-
ing and process isolation is supported in Linux em-
ploying the cgroups mechanisms [17]. Frequent writ-
ing on the flash storage due to continuous software
updates is supported by the Unsorted Block Image
File System (UBIFS) [12]. The open-source boot
loader U-Boot [8] is well suited for starting up the
platform and updating the boot image.

Communication Services. The communication
services realize communication with vehicle networks
using Ethernet, CAN or FlexRay links. They also
support automotive-specific features, such as the ISO
15765-2 transport protocol and a specific network
management. The CAN communication is supported
by the CAN network driver in Linux kernel [9]. Cur-
rently also a Flexray network driver [22] is emerging.

System Services. System services provide func-
tionality to participate in vehicle management func-
tions, such as vehicle-level power and mode manage-
ment. They must be provided by any electronic con-
trol unit in a car and are therefore placed in the plat-
form. System services often follow a master-slave
or client-server pattern, where the client or slave
component is integrated into the common platform.
Common system services are diagnosis, coding, log-
ging and tracing, calibration, and debugging.

Hardware Abstraction Layer. The hardware
abstraction layer consists of device drivers for all the
hardware components used by the platform. The re-
quired device drivers for all hardware components
used by the platform are well supported by Linux.

5 Related Work

From our personal exchange with colleagues of var-
ious companies in the automotive industry, we are
aware of research and development of hardware
and software for advanced driving assistant systems.
However so far, we have not seen any publications
describing the architecture of a possible platform.

The benefits of open-source development from a
technical view are motivated and described in “The
Cathedral and the Bazaar” [21]. The benefits from
a business point of view are further described in a
short primer at opensource.org [19]. These benefits
also apply to an open-proof development in general,
and to the described platform.

6



6 Conclusion

In this paper, we showed the requirements on a fu-
ture software platform for autonomous driving, the
benefits of an open-source development and qual-
ification of the software platform, and a platform
architecture based on Linux and other open-source
software. In future work, we want to increase evi-
dence for the platform requirements and evaluate the
quality of the discussed open-source software in the
platform. However, our main ambition is to increase
momentum for a collaborative open-proof develop-
ment and establish an open, common and extensible
high-quality platform before others are engaged in
closed-source, vendor-specific and limited platforms.

Acknowledgements. We thank Christoph Ain-
hauser, Moritz Blume, Raphael Fonte Boa Trinidade
and Thomas Schutzmeier for suggesting several tex-
tual improvements. We express our gratitude to Si-
mon Fürst, Harald Heinecke, Oliver Nölle, Michael
Rudorfer, Tillmann Schumm and Reinhard Stolle for
their full support.

References

[1] AUTOSAR. http://www.autosar.org/.

[2] Communication Network Vehicle Road Global
Extension. http://www.converge-online.de.

[3] Ko-FAS research initiative. http://www.

kofas.de.

[4] Open Source Automation Development Lab.
http://www.osadl.org.

[5] openETCS: European Train Control System.
http://www.openetcs.org.

[6] The Apache HTTP Server Project. http://

httpd.apache.org/.

[7] Jonathan Corbet. How the development process
works. The Linux Foundation, 2011.

[8] Wolfgang Denk and Detlev Zundel. The DENX
U-Boot and Linux guide for canyonlands. http:
//www.denx.de/wiki/DULG/Manual.

[9] Oliver Hartkopp. The CAN networking subsys-
tem of the Linux kernel. Proceedings of the 13th
international CAN conference, 2012.

[10] Klaus-Rüdiger Hase. Open proof for railway
safety software: A potential way-out of ven-
dor lock-in advancing to standardization, trans-
parency, and software security. 13th Real-Time
Linux Workshop, 2011.

[11] Stefan Holder, Markus Hörwick, and Hariolf
Gentner. Funktionsübergreifende Szeneninter-
pretation zur Vernetzung von Fahrerassistenz-
systemen. Automatisierungssysteme, Assisten-
zsysteme und eingebettete Systeme für Trans-
portmittel (AAET 2012), 2012.

[12] Adrian Hunter and Artem Bityutskiy. UBIFS
– new flash file system. http://lwn.net/

Articles/275706/.

[13] IEC. IEC 61508-1 ed2.0: Functional
safety of electrical/electronic/programmable
electronic safety-related systems, 2010.

[14] Coverity Inc. The 2012 Coverity Scan open
source report. 2013.

[15] ISO. EN 50128:2011 railway applications: Com-
munication, signalling and processing systems –
software for railway control and protection sys-
tems, 2011.

[16] ISO. ISO/FDIS 26262 road vehicles – functional
safety, part 1 – 10, 2011.

[17] Paul Menage. Resource control and isolation:
Adding generic process containers to the Linux
kernel. 9th Linux Symposium, 2007.

[18] Audris Mockus, Roy T. Fielding, and James D.
Herbsleb. Two case studies of open source soft-
ware development: Apache and Mozilla. ACM
Transactions on Software Engineering Method-
ology, 11(3):309–346, 2002.

[19] Open Source Initiative. Open source case for
business. http://opensource.org/advocacy/

case_for_business.php.

[20] OSADL. The OSADL project: SIL2LinuxMP.
http://www.osadl.org/SIL2LinuxMP.

sil2-linux-project.0.html.

[21] Eric S. Raymond. The Cathedral and the
Bazaar: Musings on Linux and Open Source by
an Accidental Revolutionary. O’Reilly, 2001.

[22] Benedikt Spranger. Add FlexRay support.
https://lwn.net/Articles/563254/, 2013.

[23] The Linux Kernel Organization. The Linux Ker-
nel Archives. http://www.kernel.org.

[24] David A. Wheeler and Alan Dunn. Open Proofs.
http://www.openproofs.org.

7


