

RESEARCH ON AN OPEN-SOURCE SOFTWARE PLATFORM FOR AUTONOMOUS DRIVING SYSTEMS. LUKAS BULWAHN, TILMANN OCHS, DANIEL WAGNER

BMW CAR IT GMBH

Founded in 2001 as BMW affiliate

Strengthen BMW's software competence

- View vehicles as software systems
- Develop innovative software for future BMW Group vehicles
- Prototype solutions for early and reliable project decisions

Participate in several open-source communities and research projects

AUTONOMOUS DRIVING

Long-term trend: Pass tedious driving tasks to machine
Active field of research: High rate of innovation for the foreseeable future
Competetive: All car manufacturers and others involved
Technology is now available: Sensors, Computers, Al-Algorithms
Main Challenge: Guaranteed reliability

DEPENDABLE POWER COMPUTING

manual driving, driver assistance, active safety, ...

Control Software

- state machine + controller
- reliable microcontrollers
- deterministic software

Cognitive Software

- dynamic models + Al
- peak performance SoCs
- dynamic software structure

DEPENDABLE POWER COMPUTING

manual driving, driver assistance, active safety, ...

Control Software

- state machine + controller
- reliable microcontrollers
- deterministic software

Dependable Power Computing

- dynamic models + Al
- peak performance SoCs
- dynamic software structure

DEPENDABLE POWER COMPUTING

manual driving, driver assistance, active safety, ...

Control Software

- state machine + controller
- reliable microcontrollers
- deterministic software

Dependable Power Computing

- dynamic models + Al
- peak performance SoCs
- dynamic software structure

FUNCTIONAL SAFETY

Systematic faults	=> Careful design, Analysis, QM
Random fault	=> Diagnosis, Redundancy and Fallback
"Human fault"	=> Rigid process, "Safety culture"

Cognitive Software:

Systematic but non-deterministic fault => currently uncontrollable

CURRENT SOFTWARE PLATFORM

monolithic binary images "small" microcontrollers

- => statically configured software stack
- => highly optimized using code generation

Cognitive Software:

complex processing hardware => currently not supported large and complex sw-components => laborious to integrate and debug

DPC SOFTWARE PLATFORM

		Electronic Control Unit		
	Application Software Component	Application Software	Application Software Component	
		AUTOSAR Interfaces		
atform	Middleware			
Software Pla	System Services	Platform Services	Communication Services	
	Hardware Abstraction			
Computing Hardware hardware acceleration				

System Services=> Energy Mgmt, State Mgmt, Diagnosis, Update, ...Platform Services=> Mass storage, Timebase, Monitoring, Isolation, ...Communication=> Ethernet, CAN, Flexray, Network Management, ...Middleware=> Standardized API for Portability and Reuse

LINUX AS DPC-OS

Linux...

- fulfills many of the requirements
- supports many architectures and is portable
- has large ecosystem and avoids vendor lock-in
- security is continuously monitored and improved

OSADL PROJECTS

OSADL Foundation:

- Open Source Automation Development Lab
- Foundation (Genossenschaft)
- Funds projects of common interest and provides legal consulting
- Mission: Enable use of open-source software in automation industry

Realtime Linux :

- Support and funding of real-time kernel development (PREEMPT_RT)
- Develop and operate real-time testing lab
- Provide continuous feedback to real-time community

Safety Critical Linux:

- Qualify Linux for use in safety-relevant systems (up to ASIL B)
- Develop qualification packages for partner-provided use cases
- Enabling partners to qualify future GNU/Linux releases
- Results are open source, except use-case details

OPEN-PROOF DEVELOPMENT

High development cost Beyond state of the art Problem resolution Complex platform software

- => Cost sharing through collaboration
- => Global agreement on safety case.
- => Publish safety-relevant field data.

=> Use existing building blocks, such as Linux.

Examples: eGAS, GNATpro, OpenETCS, ...

CONCLUSION.

Open-proof development of an software platform for autonomous driving...

- is non-differentiating regarding future ADAS functionality
- provides solid base for application software
- is economically superior
- enables innovative approaches to safety

Proposal to initiate activities now:

- enable Linux as automotive operating system
- incorporate dynamic RTE in AUTOSAR standard
- initiate development of open-proof software platform
- harmonize vehicle and software architectures, where possible