
SimuVEX
Using VEX in Symbolic Analysis

Yan Shoshitaishvili
yans@cs.ucsb.edu

2014

mailto:yans@cs.ucsb.edu
mailto:yans@cs.ucsb.edu

Who am I?

My name is Yan Shoshitaishvili, and I am a
PhD student in the Seclab at UC Santa
Barbara.

Email: yans@cs.ucsb.edu
Twitter: @Zardus
Github: http://github.com/zardus
Blog: http://blog.yancomm.net

This work is a collaboration between the UCSB
Seclab and the Northeastern Seclab!

http://github.com/zardus
http://blog.yancomm.net

Don't Panic!

This presentation does have a design!

1. Who (are we)?
2. What (is Symbolic Analysis)?
3. Why (did we choose VEX)?
4. How (do we do it)?
5. Where (does all of this get us)?
6. When (will it be released)?

Why Symbolic Analysis?

"How do I trigger path X or condition Y?"

❏ Dynamic analysis
❏ Input A? No. Input B? No. Input C? …
❏ Based on concrete inputs to application.

❏ (Concrete) static analysis
❏ "You can't"/"You might be able to"
❏ Based on various static techniques.

We need something slightly different.

What is Symbolic Analysis?

"How do I trigger path X or condition Y?"

1. Interpret the application.
2. Track "constraints" on variables.
3. When the required condition is triggered,

"concretize" to obtain a possible input.

"Concretize"?

Constraint solving:

❏ Conversion from set of constraints to set
of concrete values that satisfy them.

❏ NP-complete, in general.

Constraints

x >= 10
x < 100

x = 42Concretize

Symbolic Execution Example

x = int(input())
if x >= 10:
if x < 100:
print "Two!"

else:
print "Lots!"

else:
print "One!"

Symbolic Execution Example
x = int(input())

if x >= 10:

if x < 100:

print "Two!"

else:

print "Lots!"

else:

print "One!"

State A

Variables

x = ???

Constraints

x = int(input())

if x >= 10:

if x < 100:

print "Two!"

else:

print "Lots!"

else:

print "One!"

Symbolic Execution Example
State A

Variables

x = ???

Constraints

State AA

Variables

x = ???

Constraints

x < 10

State AB

Variables

x = ???

Constraints

x >= 10

Symbolic Execution Example
x = int(input())

if x >= 10:

if x < 100:

print "Two!"

else:

print "Lots!"

else:

print "One!"

State AA

Variables

x = ???

Constraints

x < 10

State AB

Variables

x = ???

Constraints

x >= 10

Symbolic Execution Example
x = int(input())

if x >= 10:

if x < 100:

print "Two!"

else:

print "Lots!"

else:

print "One!"

State AA

Variables

x = ???

Constraints

x < 10

State AB

Variables

x = ???

Constraints

x >= 10

State ABA

Variables

x = ???

Constraints

x >= 10
x < 100

State ABB

Variables

x = ???

Constraints

x >= 10
x >= 100

Concretization Time!
x = int(input())

if x >= 10:

if x < 100:

print "Two!"

else:

print "Lots!"

else:

print "One!"

State ABA

Variables

x = ???

Constraints

x >= 10
x < 100

Concretized ABA

Variables

x = 99

Symbolic Analysis Is Useful

Lots of uses:

❏ Reasoning about reachability
❏ Bughunting
❏ Test-case generation

Symbolic Analysis Is Hard

Two main challenges unique to symbolic
analysis:

1. Constraint Solving
a. NP-complete, in general
b. "not our field"

2. State Explosion
a. All outcomes of a piece of code must be

considered.
b. Loops!

Reinventing the Wheel

Existing systems:
1. Source level: EXE, CUTE, KLEE, AEG
2. Binary level: Mayhem, Fuzzball, Avalanche
3. System level: S2E

Hard to find a balance of flexibility, usability,
and support.

Stand on the Shoulders of Giants

Balance between fine-grained control and
existing tool/idea reuse:

Concepts: related work

Binary translation: VEX

Constraint solving: Z3

Why Z3?

"Shared-source" constraint solver from
Microsoft Research.

❏ Actively developed
❏ Powerful and flexible
❏ Python bindings!
❏ Not too hard to switch away from!

VEX Crash Course

VEX is Valgrind's intermediate language,
allowing Valgrind's tools to be implemented
once for cross-platform analyses.

Assembly

"ret"

Binary

0xc3Assembler

VEX IR

t0 = GET:I64(48)
t1 = LDle:I64(t0)
t2 = Add64(t0,0x8:I64)
PUT(48) = t2
PUT(184) = t1
t4 = GET:I64(184)
PUT(184) = t4

VEX

Code VEXonomy

VEX translates instructions to
 IRExprs, IRStmts, IRSBs.

❏ IRExprs provide the values
❏ IRStmts "describe" state changes
❏ IRSBs maintain structure/order

Creates a reproducible, side-effects-free
representation.

IRSB (superblock)

IRStmt

IRStmt

IRStmt

IRStmt

IRExprIRExpr

IRExpr

IRExprIRExprIRExpr

IRExpr

Step-by-step VEXample

0x8000: dec eax VEX

GET:I32(8)

IRExpr: value of eax

Sub(t0, 1)

IRExpr: t0 - 1

t1

IRExpr: t1

0x8001

IRExpr: addr of next instruction

t0 =

IRStmt: set t0 to...

t1 =

IRStmt: set t1 to...

PUT(8) =

IRStmt: put into eax...

PUT(68) =

IRStmt: put into eip...

Step-by-step VEXample (2)

0x8001: jz 0x9000 VEX

Z_FLAG()

IRExpr: value of eax

t2

IRExpr: t0

t2 =

IRStmt: set t0 to...

Exit 0x9000 if

IRStmt: exit to 0x9000 if...

PUT(68) =

IRStmt: put into eip...

0x8003

IRExpr: addr of next instruction

VEXamorphosis

SimuVEX creates a symbolic interpretation
layer over VEX:

IRSB (superblock)

IRStmt

IRStmt

IRStmt

IRStmt

IRExprIRExpr

IRExpr

IRExprIRExprIRExpr

IRExpr

SimIRSB

SimIRStmt

SimIRStmt

SimIRStmt

SimIRStmt

IRExprSimIRExpr

SimIRExpr

IRExprIRExprSimIRExpr

SimIRExpr

VEXterpretation

❏ SimIRExprs represent symbolic values.
❏ SimIRStmts modify a symbolic state.

What's a symbolic state?

SimState

❏ symbolic memory
❏ symbolic registers
❏ constraints
❏ plugins

❏ (symbolic) 'kernel'
state for userspace
binaries

VEXterpretation Example

GET:I32(8)
Sub(t0, 1)
t1
0x8001

t0 =
t1 =

PUT(8) =
PUT(68) =

Z_FLAG()
t2

t2 =
Exit 0x9000 if

PUT(68) = 0x8003

State A

Variables

eax_0

Temps

Registers

eax = eax_0
eip = 0x8000

Constraints

State B

Variables

eax_0

Temps

t0 = eax_0

Registers

eax = eax_0
eip = 0x8000

Constraints

State C

Variables

eax_0

Temps

t0 = eax_0
t1 = eax_0 - 1

Registers

eax = eax_0
eip = 0x8000

Constraints

State D

Variables

eax_0

Temps

t0 = eax_0
t1 = eax_0 - 1

Registers

eax = eax_0 - 1
eip = 0x8000

Constraints

State E

Variables

eax_0

Temps

t0 = eax_0
t1 = eax_0 - 1

Registers

eax = eax_0 - 1
eip = 0x8001

Constraints

State F

Variables

eax_0

Temps

t0 = eax_0
t1 = eax_0 - 1
t2 = eax_0-1 == 0

Registers

eax = eax_0 - 1
eip = 0x8001

Constraints

State G1

Variables

eax_0

Temps

t0 = eax_0
t1 = eax_0 - 1
t2 = eax_0-1 == 0

Registers

eax = eax_0 - 1
eip = 0x9000

Constraints

eax_0 - 1 == 0

State G

Variables

eax_0

Temps

t0 = eax_0
t1 = eax_0 - 1
t2 = eax_0-1 == 0

Registers

eax = eax_0 - 1
eip = 0x8001

Constraints

eax_0 - 1 != 0

State H

Variables

eax_0

Temps

t0 = eax_0
t1 = eax_0 - 1
t2 = eax_0-1 == 0

Registers

eax = eax_0 - 1
eip = 0x8003

Constraints

eax_0 - 1 != 0

B

C

D

E

F

G

H

A

Symbolic Interpretation (IRStmt)

Every SimIRStmt takes a state, makes changes
to memory, registers, and constraints, and
outputs a set of states.

Initial SimState

❏ symbolic memory
❏ symbolic registers
❏ constraints
❏ plugins

❏ (symbolic) 'kernel'
state for userspace
binaries

SimIRStmt

New SimState

❏ symbolic memory
❏ symbolic registers
❏ constraints

… etc

New SimState

❏ symbolic memory
❏ symbolic registers
❏ constraints

… etc

These statements are aggregated in
SimIRSBs.

SimIRSB

SimIRStmt

SimIRStmt

Symbolic Interpretation (IRSB)

Initial SimState

❏ symbolic memory
❏ symbolic registers
❏ constraints
❏ plugins

❏ (symbolic) 'kernel'
state for userspace
binaries

New SimState

❏ symbolic memory
❏ symbolic registers
❏ constraints

… etc

New SimState

❏ symbolic memory
❏ symbolic registers
❏ constraints

… etc

Complications...

The naive approach has some issues.

void *memcpy(void *dst, void *src, int n)

{

for (int i = 0; i < n; i++)

dst[i] = src[i];

return dst;

}

What happens with a symbolic "n"?

Complications...

for (int i = 0; i < n; i++) {...}

State Initial

Variables

Constraints

State A+

Variables
i = 0

n = ?

Constraints

n > 0

State A-

Variables

i = 0
n = ?

Constraints

n <= 0

State B+

Variables
i = 0

n = ?

Constraints

n > 1

State C+

Variables
i = 0

n = ?

Constraints

n > 2

State B-

Variables

i = 0
n = ?

Constraints

n <= 1

State C-

Variables

i = 0
n = ?

Constraints

n <= 2

Symbolic Summaries

Solution: replace it with a manually written
"symbolic summary".

Pro: intelligently reason about conditions
Pro: increased analysis speed
Con: manual implementation

Also used to abstract away system calls.

To support symbolic summaries, we abstract
anything that takes an input state and produces
output states as a "SimRun".

Useful Abstractions

Initial SimState

❏ symbolic memory
❏ symbolic registers
❏ constraints
❏ plugins

❏ (symbolic) 'kernel'
state for userspace
binaries

New SimState

❏ symbolic memory
❏ symbolic registers
❏ constraints

… etc

SimRun
New SimState

❏ symbolic memory
❏ symbolic registers
❏ constraints

… etc

A SimRun can be one of several things:

❏ A SimIRSB, to support direct binary
analysis

❏ A path of SimIRSBs, to aid in program
slicing

❏ A summary of state modifications.

SimRunForYourLives!

Why?

The SimRun abstraction provides several
powerful capabilities:

❏ Simplifies the analysis
❏ most analyses just use SimRun
❏ transparenty enable/disable symbolic summaries

❏ SimRuns can execute in symbolic or
concrete mode
❏ enables concolic execution on a SimRun-

granularity

What do we use this for?

We can leverage all this complex stuff to
search for bugs or vulnerabilities! For example,
authentication bypass vulnerabilities.

get_credentials

authenticate

failure success

evil_strcmp

Demo time!

Wow!

We've been gradually releasing stuff!

❏ So far, the non-symbolic underpinnings.
❏ PyVEX (http://github.com/zardus/pyvex)
❏ IDALink (http://github.com/zardus/idalink)
❏ Other minor, uninteresting things

❏ More to come!

http://github.com/zardus/pyvex
http://github.com/zardus/idalink

Questions?
Comments?

Collaboration Ideas?

