
What's New in OpenLDAP

Howard Chu
CTO, Symas Corp / Chief Architect OpenLDAP

FOSDEM'14

OpenLDAP Project

● Open source code project
● Founded 1998
● Three core team members
● A dozen or so contributors
● Feature releases every 12-18 months
● Maintenance releases roughly monthly

A Word About Symas

● Founded 1999
● Founders from Enterprise Software world

– platinum Technology (Locus Computing)

– IBM

● Howard joined OpenLDAP in 1999
– One of the Core Team members

– Appointed Chief Architect January 2007

● No debt, no VC investments

Intro
Howard Chu
● Founder and CTO Symas Corp.
● Developing Free/Open Source software since
1980s

– GNU compiler toolchain, e.g. "gmake -j", etc.

– Many other projects, check ohloh.net...

● Worked for NASA/JPL, wrote software for
Space Shuttle, etc.

4

What's New
● Lightning Memory-Mapped Database (LMDB)
and its knock-on effects
● Within OpenLDAP code
● Other projects

● New HyperDex clustered backend
● New Samba4/AD integration work
● Other features
● What's missing

LMDB
● Introduced at LDAPCon 2011

● Full ACID transactions
● MVCC, readers and writers don't block each other
● Ultra-compact, compiles to under 32KB
● Memory-mapped, lightning fast zero-copy reads
● Much greater CPU and memory efficiency
● Much simpler configuration

LMDB Impact

● Within OpenLDAP
● Revealed other frontend bottlenecks that were hidden

by BerkeleyDB-based backends
● Addressed in OpenLDAP 2.5

● Thread pool enhanced, support multiple work queues to
reduce mutex contention

● Connection manager enhanced, simplify write synchronization

OpenLDAP Frontend

● Testing in 2011 (16 core server):
● back-hdb, 62000 searches/sec, 1485 % CPU
● back-mdb, 75000 searches/sec, 1000 % CPU
● back-mdb, 2 slapds, 127000 searches/sec, 1250 %

CPU - network limited

● We should not have needed two processes to hit
this rate

Efficiency Note

● back-hdb 62000 searches/sec @ 1485 %
● 41.75 searches per CPU %

● back-mdb 127000 searches/sec @1250 %
● 101.60 searches per CPU %

● 2.433x as many searches per unit of CPU
● "Performance" isn't the point, *Efficiency* is what
matters

OpenLDAP Frontend
● Threadpool contention

● Analyzed using mutrace
● Found #1 bottleneck in threadpool mutex
● Modified threadpool to support multiple queues
● On quad-core laptop, using 4 queues reduced mutex

contended time by factor of 6.
● Reduced condition variable contention by factor of 3.
● Overall 20 % improvement in throughput on quad-core

VM

OpenLDAP Frontend
● Connection Manager

● Also a single thread, accepting new connections and
polling for read/write ready on existing

● Now can be split to multiple threads
● Impact depends on number of connections

● Polling for write is no longer handled by the listener thread
● Removes one level of locks and indirection
● Simplifies WriteTimeout implementation
● Typically no benchmark impact, only significant when blocking on

writes due to slow clients

OpenLDAP Frontend

OL 2.4 OL 2.5
0

5000

10000

15000

20000

25000

30000

35000

40000

Frontend Improvements, Quadcore VM

SearchRate

AuthRate

ModRate

O
ps

/S
ec

on
d

OpenLDAP Frontend

● Putting it into context, compared to :
– OpenLDAP 2.4 back-mdb and hdb

– OpenLDAP 2.4 back-mdb on Windows 2012 x64

– OpenDJ 2.4.6, 389DS, ApacheDS 2.0.0-M13

– Latest proprietary servers from CA, Microsoft,
Novell, and Oracle

OpenLDAP Frontend

OL mdb
OL hdb

OL mdb W64
OpenDJ

389DS
Other #1

Other #2
Other #3

Other #4
AD LDS 2012

ApacheDS

0

5000

10000

15000

20000

25000

30000

35000

LDAP Performance

Search Mixed Search Modify Mixed Mod

O
ps

/s
ec

on
d

OpenLDAP Frontend

OL mdb 2.5
OL mdb

OL hdb
OL mdb W64

OpenDJ
389DS

Other #1
Other #2

Other #3
Other #4

AD LDS 2012
ApacheDS

0

5000

10000

15000

20000

25000

30000

35000

40000

LDAP Performance

Search Mixed Search Modify Mixed Mod

O
ps

/s
ec

on
d

LMDB Impact
● Adoption by many other projects

● Outperforms all other embedded databases in
common applications
● CFengine, Postfix, PowerDNS, etc.

● Has none of the reliability/integrity weaknesses of
other databases

● Has none of the licensing issues...
● Integrated into multiple NoSQL projects

● Redis, SkyDB, Memcached, HyperDex, etc.

LMDB Microbenchmark

● Comparisons based on Google's LevelDB
● Also tested against Kyoto Cabinet's TreeDB,
SQLite3, and BerkeleyDB

● Tested using RAM filesystem (tmpfs), reiserfs on
SSD, and multiple filesystems on HDD

– btrfs, ext2, ext3, ext4, jfs, ntfs, reiserfs, xfs, zfs

– ext3, ext4, jfs, reiserfs, xfs also tested with external
journals

LMDB Microbenchmark

● Relative Footprint

● Clearly LMDB has the smallest footprint
– Carefully written C code beats C++ every time

text data bss dec hex filename

272247 1456 328 274031 42e6f db_bench

1675911 2288 304 1678503 199ca7 db_bench_bdb

90423 1508 304 92235 1684b db_bench_mdb

653480 7768 1688 662936 a2764 db_bench_sqlite3

296572 4808 1096 302476 49d8c db_bench_tree_db

LMDB Microbenchmark

Sequential
0

2000000

4000000

6000000

8000000

10000000

12000000

14000000

16000000

Read Performance

Small Records

SQLite3 TreeDB LevelDB BDB MDB

Random
0

100000

200000

300000

400000

500000

600000

700000

800000

Read Performance

Small Records

SQLite3 TreeDB LevelDB BDB MDB

LMDB Microbenchmark

Sequential
0

5000000

10000000

15000000

20000000

25000000

30000000

35000000

7402 16514 299133 9133

30303030

Read Performance

Large Records

SQLite3 TreeDB LevelDB BDB MDB

Random
0

200000

400000

600000

800000

1000000

1200000

1400000

1600000

1800000

2000000

7047 14518 15183 8646

1718213

Read Performance

Large Records

SQLite3 TreeDB LevelDB BDB MDB

LMDB Microbenchmark

Sequential
1

10

100

1000

10000

100000

1000000

10000000

100000000

7402
16514

299133

9133

30303030

Read Performance

Large Records

SQLite3 TreeDB LevelDB BDB MDB

Random
1

10

100

1000

10000

100000

1000000

10000000

7047
14518 15183

8646

1718213

Read Performance

Large Records

SQLite3 TreeDB LevelDB BDB MDB

LMDB Microbenchmark

Sequential
0

2000

4000

6000

8000

10000

12000

14000

2029

5860

3366

1920

12905

Asynchronous Write Performance

Large Records, tmpfs

SQLite3 TreeDB LevelDB BDB MDB

Random
0

2000

4000

6000

8000

10000

12000

14000

2004

5709

742

1902

12735

Asynchronous Write Performance

Large Records, tmpfs

SQLite3 TreeDB LevelDB BDB MDB

LMDB Microbenchmark

Sequential
0

2000

4000

6000

8000

10000

12000

14000

2068

5860

3138

1952

13215

Batched Write Performance

Large Records, tmpfs

SQLite3 TreeDB LevelDB BDB MDB

Random
0

2000

4000

6000

8000

10000

12000

14000

2041

5709

3079

1939

13099

Batched Write Performance

Large Records, tmpfs

SQLite3 TreeDB LevelDB BDB MDB

LMDB Microbenchmark

Sequential
0

2000

4000

6000

8000

10000

12000

14000

2026

3121 3368

1913

12916

Synchronous Write Performance

Large Records, tmpfs

SQLite3 TreeDB LevelDB BDB MDB

Random
0

2000

4000

6000

8000

10000

12000

14000

1996 2162

745

1893

12665

Synchronous Write Performance

Large Records, tmpfs

SQLite3 TreeDB LevelDB BDB MDB

MemcacheDB

BDB 4.7 MDB Memcached
0.01

0.1

1

10

100

Read Performance

Single Thread, Log Scale

min

avg

max90th

max95th

max99th

maxm
se

c

BDB 4.7 MDB Memcached
0.01

0.1

1

10

100

1000

Write Performance

Single Thread, Log Scale

min

avg

max90th

max95th

max99th

maxm
se

c

MemcacheDB

BDB 4.7 MDB Memcached
0.01

0.1

1

10

Read Performance

4 Threads, Log Scale

min

avg

max90th

max95th

max99th

maxm
se

c

BDB 4.7 MDB Memcached
0.01

0.1

1

10

100

1000

Write Performance

4 Threads, Log Scale

min

avg

max90th

max95th

max99th

maxm
se

c

HyperDex
● New generation NoSQL database server

● http://hyperdex.org
● Simple configuration/deployment
● Multidimensional indexing/sharding
● Efficient distributed search engine
● Built on Google LevelDB, evolved to their fixed

version HyperLevelDB
● Ported to LMDB

http://hyperdex.org/

LMDB, HyperDex

LMDB, HyperDex
● CPU time used for inserts :

● LMDB 19:44.52
● HyperLevelDB 96:46.96

● HyperLevelDB used 4.9x more CPU for same
number of operations

● Again, performance isn't the point. Throwing
extra CPU at a job to "make it go faster" is
stupid.

LMDB, HyperDex

LMDB, HyperDex

● CPU time used for read/update :
– LMDB 1:33.17

– HyperLevelDB 3:37.67

● HyperLevelDB used 2.3x more CPU for same
number of operations

LMDB, HyperDex

LMDB, HyperDex
● CPU time used for inserts :

● LMDB 227:26
● HyperLevelDB 3373:13

● HyperLevelDB used 14.8x more CPU for same
number of operations

LMDB, HyperDex

LMDB, HyperDex

● CPU time used for read/update :
– LMDB 4:21.41

– HyperLevelDB 17:27

● HyperLevelDB used 4.0x more CPU for same
number of operations

back-hyperdex
● New clustered backend built on HyperDex

● Existing back-ndb clustered backend is deprecated, Oracle
has refused to cooperate on support

● Nearly complete LDAP support
● Currently has limited search filter support
● Uses flat (back-bdb style) namespace, not hierarchical
● Still in prototype stage as HyperDex API is still in flux

Samba4/AD

● Samba4 provides its own ActiveDirectory-compatible
LDAP service
● built on Samba ldb/tdb libraries
● supports AD replication

● Has some problems
● Incompatible with Samba3+OpenLDAP deployments
● Originally attempted to interoperate with OpenLDAP, but

that work was abandoned
● Poor performance

Samba4/AD

● OpenLDAP interop work revived
● two opposite approaches being pursued in parallel

● resurrect original interop code
● port functionality into slapd overlays

● currently about 75 % of the test suite passes
● keep an eye on contrib/slapd-modules/samba4

Other Features

● cn=config enhancements
● Support LDAPDelete op
● Support slapmodify/slapdelete offline tools

● LDAP transactions
● Needed for Samba4 support

● Frontend/overlay restructuring
● Rationalize Bind and ExtendedOp result handling
● Other internal API cleanup

What's Missing

● Deprecated BerkeleyDB-based backends
● back-bdb was deprecated in 2.4
● back-hdb deprecated in 2.5
● both scheduled for deletion in 2.6
● configure switches renamed, so existing packager

scripts can no longer enable them without explicit
action

Questions?

41

Thanks!

