Apache Solr as a compressed, scalable,
and high performance time series database

FOSDEM 2015

Florian Lautenschlager
31. January 2015
FOSDEM 2015, Brussels

68.000.000.000* time correlated data objects.

How to store such amount of data on your laptop computer and
retrieve any point within a few milliseconds?

* or collect and store 680 metrics X 500 processes x 200 hosts over 3 years

This approach does not work well.

B Store data objects in a classical RDBMS

Meta Data
Host
Process
B Reasons for us:
. . * | |
B Slow import of data objects . 108.000.000.000:
Measurement Series Time Series Data Object
H * *
B Hugh amount of hard drive space g?mte Stant Timestamp
. . . ar

W Slow retrieval of time series End End Value

M Limited scalability due to RDBMS *
Metric
Name

G T

Approach felt like ...

. Not sure
—— T : ; whether bad
= S driver or
e B~ | \wrong car!?

Changed the car and the driver... and it works!

B The key ideas to enable the efficient storage of billion data objects:
M Split data objects into chunks of the same size
B Compress these chunks to reduce the data volume

B Store the compressed chunks and the metadata in one Solr document

Time Series
Start
B Reason for success: End
Data [] 168.000!
M 37 GB disk usage for 68 billion data objects Size
PointType
M Fast retrieval of data objects within a few milliseconds Meta Data []

B Searching on metadata
B Everything runs on a laptop computer

M ... and many more!

LSS

That's all.
No secrets, nothing special and nothing more to say ;-)

Hard stuff - Time for beer!

The agenda for the rest of the talk.

B Time Series Database - What's that? Definitions and typical features.

B Why did we choose Apache Solr and are there alternatives?

B How to use Apache Solr to store billions of time series data objects.

Time Series Database: What’s that?

B Definition 1: “A data object d is a 2-tuple of {timestamp, value}, where
the value could be any kind of object.”

B Definition 2: “Atime series T is an arbitrary list of chronological
ordered data objects of one value type”

B Definition 3: “Achunk C is a chronological ordered part of a time
series.”

B Definition 3: “Atime series database TSDB is a specialized database
for storing and retrieving time series in an efficient and optimized

way”.

A few typical features of a time series database

B Data management M Performance and Operational
B Round Robin Storages B Rare updates, Inserts are additive
B Down-sample old time series B Fast inserts and retrievals
B Compression M Distributed and efficient per node

B No need of ACID, but consistency

M Arbitrary amount of Metadata B Time series language and API
M For time series (Country, Host, Customer, ...) B Statistics: Aggregation (min, max, median), ...
M For data object (Scale, Unit, Type) B Transformations: Time windows, time shifting,
resampling, ..

Check out: A good post about the requirements of a time series: http://www.xaprb.com/blog/2014/06/08/time-series-database-requirements/

http://www.xaprb.com/blog/2014/06/08/time-series-database-requirements

That’s what we need the time series database for.
=

File Edit View Mavigate Tools Window Help

Oune

EKG Graph Viewer X

th

Series |Pagnia-all Metric |MXBean(java.lang:type=Memary). *Memorylsage, * sampling |Mone w | From [21.11,2014
Measurement |* Exdude Agagregation | Avg Until |03.12.2014
Host |* W [] Expert Mede {Lucene Query Language) Graph |Line Create Bookm...

Repository

Process = Generate Graph

Type | jmx-collector

500.000,000
21.11.2014 23.11.2014 25.11.2014 27.11.2014 28.11.2014 01.12.2014 03.12.2014

*_ 475,000,000 2320 2T REe R 2820 2ETHREEG R FEHEE F g 3
&, 450,000,000
425,000,000
400,000,000
375.000,000
350,000,000
325.000,000
300.000,000
275.000,000
250,000,000
225,000,000
200,000,000
175.000,000
150,000,000
125,000,000
100,000,000
75.000.000

50.000.000

25,000,000

0

Memory). ¥MemoryUsa

MxBean(javalang:type

27-Mow 28-Mov 20-Moy 30-Mow
Time

Videos/EKG.wmv
Videos/EKG.wmv

Some time series databases out there.
B RRDTool - http://oss.oetiker.ch/rrdtool/

B Mainly used in traditional monitoring systems
y 2= RRDtool
logging & graphing

M InfluxDB - http://influxdb.com/
BmThe new kid on the block. Based on LevelDB G0
DB

http://oss.oetiker.ch/rrdtool/
http://influxdb.com/
http://opentsdb.net/
http://www.scidb.org/

“Ey, there are so many time series databases out there? Why did
you create a new solution? 2l time ?”

“Our tool has been around for Alternatives? Rre was no time series
database that complies our j In our opinion the best w7,
alternative is ElasticSearch. Apache ,’
Solr and ElasticSearch are both E
: based on Lucene. SOI r -
Our Requirements e Solr

B A fast write and query performance pEEron Lucene which is really fast

M Runs embedded or as standalone server J

M Lucene has a build in comyssion J

B Schema or schemaless

B Run the database on a laptop computer
B Minimal data volume for stored data objects
B Storing arbitrary metadata

B A Query API for searching on all information M Solr Query Language

B Large community and an active development M Lucidworks and an Apache project

|

Solr has a powerful query language that enriches the Lucene
guery language.

B An example for a complex query:
host:h* AND metric:*memory*used AND -start: [NOW — 3 DAYS] OR -end: [NOW + 3 DAYS]

B A few powerful Solr query language features
B Wildcards: host:server?1 (single) and host:server* (multiple characters)
B Boolean operators: conference:FOSDEM AND year:(2015 || 2016) NOT talk:"Time series in RDBMS”
B Range queries: zipCode: [123 TO *]
B Date-Math: conferenceDate:[* TO NOW], conferenceDate:[NOW-1YEAR/DAY TO NOW/DAY+1DAY]

B Boosting of terms: “| am a four times boosted search term”™ 4, “| am just normal search term”

M ... -> https://cwiki.apache.org/confluence/display/solr/Query+Syntax+and+Parsing

https://cwiki.apache.org/confluence/display/solr/Query+Syntax+and+Parsing
Videos/QueryLanguageNew.wmv

Fast navigation over time series metadata is a must-have when
dealing with billions of data objects.

B Solr has a powerful query language which allows complex wildcard expressions

series:40-Loops-Optimzation AND host:server(01 ¥ Repositories

AND prOceSS iy * AND type 0 jITlX‘COlleC tor v '-L:-:U:O::S-Omimization (94619)

¥ [server01 (37823)
¥ B Metrics
¥ B jmx-collector (1028)
M The faceting functionality allows a dynamic drilldown navigation. et esdng sdeatestoon (8

B MXBeanijava.lang:itype=Classloading).TotalloadedClassCount (19)
B MXBeanijava.lang:type=ClassLoading).UnloadedClassCount (19)

B Faceting is the arrangement of search results into categories (Facets) 5 MBean(invaangypeClassLonding) Verbose (1]
based On Indexed terms B MXBeanijava.lang:itype=Memory).HeapMemaoryUsage.committed (19)

QueryResponse response = solr.query (query) ;
FacetField field = response.getFacetField(SolrSchema.IDX METRIC) ;
List<FacetField.Count> count = field.getValues() ;

if (count == null) [return Stream.empty() ;}
return count.stream().filter(c ->
c.getCount() !'= 0) .map(c -> new Metric(c.getName () .substring(l) ,c.getCount()))

Videos/FacetNavigation.wmv
Videos/FacetNavigation.wmv
Videos/QueryLanguage.wmv

Many slides later...

...we are continuing from slide five.

Changed the car and the driver... and it works!

B The key ideas to enable the storage of billion data objects:
B Split data objects into chunks of the same size
B Compress these chunks to reduce the data volume

B Store the compressed chunks and the metadata in one document

Time Series

Start
B Reason for success: End
Data [] /68.000!
B 37 GB disk usage for 68 billion data objects Size
PointType
B Fast retrieval of data objects within a few milliseconds Meta Data []

B Dynamic searching on metadata
M Everything runs on a laptop computer

B .. and many more!

15

First: Do not store data object by data object by data object by...

B Do not store 68 billion single documents. Do instead store 1.000.000 documents each
containing 68000 data objects as BLOB.

’

"does": [Strategy 1: Raw data objects
{
"size": 68000, .= { (Date, Value), (Date, Value) ...)}
"metric": "$HeapMemory.Usage",
"dataPointType": "METRIC", Strategy 2. Compressed data objects
"data": [BLOB], —
"start": 1421855119981, := Compressed { (Date, Value), (Date, Value) ...)}
"samplingRate": 1, _ _
"end": 1421923118981, Strategy 3: Semantic-compressed data objects
"samplingUnit": "SECONDS", i
nidg": "27feed0S—4728—. " := Compressed {Value, Value}
S ——
},
]

Don’t store needless things. Two compression approaches.

ID e 1ID

Meta information * Meta information

Points: { Compression * Points: {compress (
<Timestamp, Value> <Timestamp, Value>

. . <Timestamp, Value>
Semantic Compression) P
Sampling rate
Time unit
First Date

<Timestamp, Value>

}

B Strategy 2: Basic compression with GZIP, 1z4, ...

B Works for every data object and the compression rate is higher, if the document has more data objects

:= Compressed { (Date, Value), (Date, Value) ...)}

B Strategy 3. Semantic compression by only storing the algorithm to create the timestamp

B Works only on time series with a fixed time interval between the data objects (Sampling, ...)

:= Compressed {Value, Value} + First Date + Sampling Rate + Time Unit

eSS

Second: Correct handling of continuous time series in a
document oriented storage.

Continuous time series Time series chucks Compression techniques Storage
A —
—_—
j—
) -
=) —
T =
>
: > Apache Solr
Time

Storage workflow

>

Query workflow

<

Solr allows server-side decompression and aggregation by
Implementing custom function queries.

B Why should we do that? Send the query to the data!

B Aggregation should be done close to the data to avoid unnecessary overhead for serialization,
transportation and so on.

B A function query enables you to create server-side dynamic query-depending results and use it in the
query itself, sort expressions, as a result field, ...

Our ValueSourceParser
B Imagine you want to check the maximum of all time series in our storag?/
http://localhost:8983/core/select?qg=*:*&fl=max (decompress (data))

B And now get your own impression.

- N
% Total % Receiwved % Xferd Average Speed Time Time Time Current
Dload Upleoad Total Spent Left Speed
188 123k B 123k @ @ 14741 B ——I—-——-I—— ‘BI8B:IBE —I——I-—— 21588

e

68.400.000 data objects in 1000 documents and each has 86400 Points.

Videos/FunctionQueryNew.wmv
Videos/FunctionQueryNew.wmv

Third: Enjoy the outstanding query and storage results on your

laptop computer.

30
Logarithmic scale for the storage amount

il Data objects have a strong
impact on the storage volume!

(7))
& -~
-
o 26 - =7
(D) .~
& -7
- — O’ /
- - -
> = -7
-

q) 24_ _/— /O/
-] . _
& -1 -

- - /’

/'/ //
22 _/' ’—5 ________ -

g
- -
/— 9”
_/ _/
”’
.= -

20 Jls

Time for query one data object

— 37989.18

|
MB

— 388.00

— 38.91

Storage Amount /

— 3.89

— 0.39

68 Thousand 6.84e+5 6.84e+6 68 Million 6.84e+8

Data Objects

6.84e+9

68 Billion

Our present for the community:
The storage component including the Query-API

(currently nameless, work in progress)

B We are planning to publish the Query-API and its storage component on GitHub.

M Interested? Give me a ping: florian.lautenschlager@qgaware.de

B Excessive use of Java 8 QueryMetricContext query = new QueryMetricContext.Builder ()
Stream API .connection (connection)
.metric("*fosdem*visitor*statistics*delighted.rate")
B Time Shift, Fourier -build();
Transformation, Time WIiNdOWS | streamcTimeSeries> fosdemDelightedStats = new AnalysisSolrImpl(query)
and many more .filter (0.5, FilterStrategy.LOWER EQUALS)//Delighted visitors
.timeFrame (1, ChronoUnit.DAYS)//on each day
[] Groovy DSL based on the .timeShift (1, ChronoUnit.YEARS)//and next year
.result() ;
fluent API (concept)
B Optional R-Integration for

higher statistics

Questions?
GGG T T

