
Native D3D9 on Mesa Gallium Nine : the status

Native D3D9 on Mesa
Gallium Nine : the status

Axel Davy

FOSDEM 2015



Native D3D9 on Mesa Gallium Nine : the status

1 Introduction

2 Wine integration

3 Presenting to the screen
D3D9 queue
multi-gpu
Misc

4 Gallium Nine internals

5 Performance
Test configuration 1
Test configuration 2
Conclusion

6 Plans for the future



Native D3D9 on Mesa Gallium Nine : the status
Introduction

What is this talk about ?

2002: d3d9 release
2004: OpenGL 2.0 release
2004: d3d9 gets improved with shader model 3 support
2006: OpenGL 2.1 release
2006: d3d10 release
2008: OpenGL 3.0 release
2009: d3d11 release
2010: OpenGL 3.3 and 4.0 release
2012: first game with d3d11 support but no d3d9 support
2014: most new d3d games still released with d3d9 support



Native D3D9 on Mesa Gallium Nine : the status
Introduction

What is this talk about ?

Why do we want d3d9 ?
⇒ If you want play all d3d9 games released. There’s a lot of them

But we have Steam on Linux ?
⇒ That’s cool, but what about this game Put your game here
which is not ported ?

Recent games are enough for me !
⇒ Cool for you

But wine already supports d3d9 ?
⇒ Yes, but we can get better support with Gallium Nine.



Native D3D9 on Mesa Gallium Nine : the status
Introduction

What is Gallium Nine

Project started in 2010 by Joakim Sindholt.

Boosted in 2013 by Christoph Bumiller

Project slowly improves over 2014 and get merged in Mesa.



Native D3D9 on Mesa Gallium Nine : the status
Introduction

What is Gallium Nine

Gallium 
Helpers

Drivers

R600

Radeonsi

nouveau

Ilo

State 
trackers

Video
acceleration

(vaapi, vdpau, etc)

Gallium
Nine

Mesa

Gallium Api
TGSI



Native D3D9 on Mesa Gallium Nine : the status
Introduction

What is Mesa

Gallium
Mesa

state tracker

Dri drivers
i965
r200

...

GLX
EGL

GLSL parser 
and optimiser

GL API



Native D3D9 on Mesa Gallium Nine : the status
Introduction

How Gallium Nine and Wine are linked

Wine

Wine dlls

Wine d3d9 gl backend
talks to GL and uses 
Window System API

Wine nine backend
talks to X directly and links 

to gallium nine



Native D3D9 on Mesa Gallium Nine : the status
Wine integration

Plan

1 Introduction

2 Wine integration

3 Presenting to the screen
D3D9 queue
multi-gpu
Misc

4 Gallium Nine internals

5 Performance
Test configuration 1
Test configuration 2
Conclusion

6 Plans for the future



Native D3D9 on Mesa Gallium Nine : the status
Wine integration

Gallium Nine

Gallium Nine is:

Mesa only. No proprietary drivers support !
Gallium only. Poor intel support !

It is composed of:
Gallium state tracker
Wine d3d9.dll integration



Native D3D9 on Mesa Gallium Nine : the status
Wine integration

How integration works

Wine - Gallium
d3d9.dll → Direct3DCreate9 → IDirect3D9.
IDirect3D9 → IDirect3DDevice9.

IDirect3D9: Used to get supported formats, resolutions,
multisampling modes and device info.
IDirect3D9: Uses D3DAdapter9 for the implementation.
IDirect3DDevice9: Used for everything related to rendering.
IDirect3DDevice9: Uses ID3DPresent to get window size and send
buffers to the screen.



Native D3D9 on Mesa Gallium Nine : the status
Wine integration

How integration works

Wine connects to Gallium Nine and implements all the
Window system bits

Gallium Nine does everything else

⇒ It is possible to use Gallium Nine without Wine (Xnine).



Native D3D9 on Mesa Gallium Nine : the status
Wine integration

Window system integration

Implementation goals:
Client side buffer allocation
Good multi-gpus laptop support
Behaviour close to expected behaviour

Answer:
X DRI3 is about client side buffer allocation ( 6= DRI2)
X PRESENT enables control with precision the buffer
presentation

For better compatibility, we implemented DRI2/PRESENT fallback
relying on EGL_EXT_image_dma_buf_import extension



Native D3D9 on Mesa Gallium Nine : the status
Presenting to the screen

Plan

1 Introduction

2 Wine integration

3 Presenting to the screen
D3D9 queue
multi-gpu
Misc

4 Gallium Nine internals

5 Performance
Test configuration 1
Test configuration 2
Conclusion

6 Plans for the future



Native D3D9 on Mesa Gallium Nine : the status
Presenting to the screen
D3D9 queue

Present extension

D3D9 expects Render-ahead queue.

OpenGL: As Fast as possible OR synchronized with screen refresh.
synchronized with screen refresh: if at vblank n, two frames are
presented, only last one will be shown (at vblank n + 1).
⇒ Tripple buffering possible.

D3D9: As Fast as possible OR synchronized with screen refresh.
synchronized with screen refresh: new presentation is a last vblank
scheduled + 1.
All frames are presented. NO Tripple buffering.



Native D3D9 on Mesa Gallium Nine : the status
Presenting to the screen
D3D9 queue

D3D9 Render-ahead queue

Apps define the number of back buffers and vblank
synchronization.

At every presentation you get a free back buffer from the back
buffer pool (order/behaviour defined by parameter). Wait is done
when no back buffer is free.
⇒ In practice apps use 2 back buffers, so OpenGL behaviour is ok.
However some apps use 3 back buffers.



Native D3D9 on Mesa Gallium Nine : the status
Presenting to the screen
multi-gpu

multi-gpu

Some laptops have integrated gpu + dedicated gpu.

Under Mesa OpenGL you can use DRI_PRIME or device_id to
choose the gpu.



Native D3D9 on Mesa Gallium Nine : the status
Presenting to the screen
multi-gpu

How GPU offloading works

Reminder on how DRI_PRIME works:

Get granted access to the device:
DRI2: Special Flag for it
DRI3: Use Render-nodes!

How devices talk to each other.
Render to a tiled buffer in VRAM
DRI2: Send it to X server, which will copy to linear buffer
DRI3: Copy to a linear buffer and present it



Native D3D9 on Mesa Gallium Nine : the status
Presenting to the screen
multi-gpu

multi-gpu

Sorry !

DRI_PRIME under DRI3 sucks. It wasn’t intended to !
dma-buf fences still not implemented for all gpus
radeon driver doesn’t use dma copy anymore for the
presentation copy

⇒ GPU will sometimes display whole frames older than the
previous one, or display one partially updated (triangle shaped
tearing)



Native D3D9 on Mesa Gallium Nine : the status
Presenting to the screen
multi-gpu

multi-gpu

Sorry !

DRI_PRIME under DRI3 sucks. It wasn’t intended to !
dma-buf fences still not implemented for all gpus
radeon driver doesn’t use dma copy anymore for the
presentation copy

⇒ GPU will sometimes display whole frames older than the
previous one, or display one partially updated (triangle shaped
tearing)



Native D3D9 on Mesa Gallium Nine : the status
Presenting to the screen
multi-gpu

multi-gpu

DRI_PRIME sucks because of synchronization.

DRI2: No synchronization expected. dgpu copies to one buffer,
igpu reads from it.
DRI3: Synchronization expected one day. dgpu copies to several
buffers, igpu reads from them.
DRI2 always tears, DRI3 has more potential but will show frames
in wrong order or not rendered yet because of missing
synchronization.

Note: we could workaround Mesa to have DRI3 do the same than
DRI2 for now.



Native D3D9 on Mesa Gallium Nine : the status
Presenting to the screen
multi-gpu

multi-gpu

Wait !

You expect synchronization done in the kernel.

Why not Mesa side ?
⇒ That’s the solution taken for Gallium Nine



Native D3D9 on Mesa Gallium Nine : the status
Presenting to the screen
multi-gpu

multi-gpu

Wait !
You expect synchronization done in the kernel.

Why not Mesa side ?
⇒ That’s the solution taken for Gallium Nine



Native D3D9 on Mesa Gallium Nine : the status
Presenting to the screen
multi-gpu

multi-gpu

Wait !
You expect synchronization done in the kernel.

Why not Mesa side ?

⇒ That’s the solution taken for Gallium Nine



Native D3D9 on Mesa Gallium Nine : the status
Presenting to the screen
multi-gpu

multi-gpu

Wait !
You expect synchronization done in the kernel.

Why not Mesa side ?
⇒ That’s the solution taken for Gallium Nine



Native D3D9 on Mesa Gallium Nine : the status
Presenting to the screen
multi-gpu

multi-gpu

Gallium Nine thread_submit=true parameter

Uses an additional thread to do the presentations.
Wait the buffer is rendered before presenting.

Result: Excellent. Same performance, but NO DRI_PRIME bugs.
Tear-free possible !



Native D3D9 on Mesa Gallium Nine : the status
Presenting to the screen
Misc

Presentation of multisampled buffers

Apps can ask for a multisampled backbuffer/depth buffer.
But you want to present a single-sampled buffer.

Similar to the multi-gpu case, do a copy.
Rendering is done to multisampled buffer, and copied to
non-multisampled buffer.



Native D3D9 on Mesa Gallium Nine : the status
Presenting to the screen
Misc

Throttling

Throttling: Wait done when cpu submits too fast new frames and
gpu cannot keep up.

⇒ Extremely important for lag control.

Throttling queue: Usually 2 buffers max for Mesa.

Controlled in Gallium Nine by throttle_value (default 2).
0 means "always wait" (equivalent to glFinish. Bad for
performance. No lag).
−1 means "do not wait": Have fun.



Native D3D9 on Mesa Gallium Nine : the status
Gallium Nine internals

Plan

1 Introduction

2 Wine integration

3 Presenting to the screen
D3D9 queue
multi-gpu
Misc

4 Gallium Nine internals

5 Performance
Test configuration 1
Test configuration 2
Conclusion

6 Plans for the future



Native D3D9 on Mesa Gallium Nine : the status
Gallium Nine internals

How apps do render

Usually an app does every frame hundreds of:

. Change some Render states

. Change textures bound

. Update vertex buffer

. Switch to another Vertex/Pixel shader

. Update shader constants

. Draw

. Repeat until Presentation

Apps minimize the changes done at every draw call for better
performance



Native D3D9 on Mesa Gallium Nine : the status
Gallium Nine internals

State changes

Render states in gallium are changed in groups

pipe_depth_stencil_alpha_state
pipe_rasterizer_state
pipe_blend_state
pipe_sampler_state
...

D3D9 states are changed individually

D3DRS_SHADEMODE
D3DRS_CULLMODE
D3DRS_FILLMODE
...



Native D3D9 on Mesa Gallium Nine : the status
Gallium Nine internals

State changes

States changes are commited before every new draw call.



Native D3D9 on Mesa Gallium Nine : the status
Gallium Nine internals

Vertex/Pixel shaders

Wine and Mesa state tracker both delay shader compilation at
draw time.

⇒ there are stuttering during the first minutes of play.

This is because a vertex shader can be used with several pixel
shaders and vice versa ⇒ need to link the gl shader again for all
new combinations, and because of coordinate handling (rendering
to framebuffer or backbuffer doesn’t have same coordinates).



Native D3D9 on Mesa Gallium Nine : the status
Gallium Nine internals

Vertex/Pixel shaders

Gallium Nine doesn’t have to cope with coordinate system
changes: Doesn’t change !

Gallium Nine compiles shaders at the time they are expected to be
compiled. Are compiled once for all (except for very special cases,
but very few shaders will be concerned).



Native D3D9 on Mesa Gallium Nine : the status
Gallium Nine internals

Mapping Vertex shader outputs to pixel shader inputs

Vertex shader code
VS3.0
DEF c87 { 306.5 1.000000 0.000000 0.000000 }
DCL v0 POSITION0
DCL v1 TEXCOORD0
DCL v2 COLOR0
DCL v3 BLENDWEIGHT0
DCL v4 BLENDINDICES0
DCL o0 POSITION0
DCL o1.xy__ TEXCOORD0
DCL o2.xyz_ TEXCOORD1
DCL o3 COLOR0
DCL o4 COLOR1
...



Native D3D9 on Mesa Gallium Nine : the status
Gallium Nine internals

Mapping Vertex shader outputs to pixel shader inputs

Vertex shader code
VERT
DCL IN[0]
DCL IN[1]
DCL IN[2]
DCL IN[3]
DCL IN[4]
DCL IN[5]
DCL IN[6]
DCL OUT[0], POSITION
DCL OUT[1].xy, GENERIC[0]
DCL OUT[2].xyz, GENERIC[1]
DCL OUT[3], COLOR
DCL OUT[4], COLOR[1]
...



Native D3D9 on Mesa Gallium Nine : the status
Gallium Nine internals

Mapping Vertex shader outputs to pixel shader inputs

Pixel shader code
PS3.0
DEF c15 { 2.000000 -1.000000 0.000000 0.000000 }
DEF c16 { -0.000000 -1.000000 -2.000000 1.000000 }
DEFI iconst[0] { 3 0 0 0 }
DCL v0.xy__ TEXCOORD0
DCL v2.xyz_ TEXCOORD1
DCL v6 COLOR0
DCL v7 COLOR1
...



Native D3D9 on Mesa Gallium Nine : the status
Gallium Nine internals

Mapping Vertex shader outputs to pixel shader inputs

We associate a index to every usage/index possible, and fills the
data into GENERIC[index].

Index bijection fixed. GENERIC[index] can be sparse.
No need to recompile when using different pixel or vertex shader !



Native D3D9 on Mesa Gallium Nine : the status
Gallium Nine internals

Translate shader code

Code in binary format, already optimised.

Translation easy:
MUL r0._yzw r0.yyyy c10.xxyz
becomes
MUL TEMP[0].yzw, TEMP[0].yyyy, CONST[10].xxyz



Native D3D9 on Mesa Gallium Nine : the status
Gallium Nine internals

Translate shader code

But special cases to handle around 0, Inf and NaN

RSQ r0.x___ r0.xxxx
becomes
RSQ TEMP[0].x, TEMP[0].xxxx
MIN TEMP[0].x, IMM[0].wwww, TEMP[0].xxxx
With IMM[0].wwww = FLT_MAX



Native D3D9 on Mesa Gallium Nine : the status
Gallium Nine internals

Mapping formats

D3DFMT_A8R8G8B8 => PIPE_FORMAT_B8G8R8A8_UNORM
D3DFMT_D24S8 => PIPE_FORMAT_S8_UINT_Z24_UNORM
D3DFMT_D24X8 => PIPE_FORMAT_X8Z24_UNORM
D3DFMT_D16 => PIPE_FORMAT_Z16_UNORM,

We map to the equivalent gallium format.



Native D3D9 on Mesa Gallium Nine : the status
Gallium Nine internals

Conclusion

State handling is easy
Draw call mapping are easy
Shader code to TGSI is easy
Format conversion is easy

Great, but why are there still bugs ?

fixed function code special undocumented behaviours
How to handle cases supposed to be forbidden by the spec,
but that apps do anyway ?
Undocumented special behaviours
Stateblocks are hard to implement right



Native D3D9 on Mesa Gallium Nine : the status
Gallium Nine internals

CPU overhead

Gallium Nine has low CPU overhead because the conversion
from d3d9 call to gallium API is easy.
With Gallium API, we can assume API call succeed. No need
to check driver error. Checks are done by Gallium Nine before
submission.
State change: Could do better

What we do: put flags on which gallium state groups need
being updated. Update them at draw call.
What we could do: update the state groups structure right
away, and put flag to submit it at draw call.



Native D3D9 on Mesa Gallium Nine : the status
Performance

Plan

1 Introduction

2 Wine integration

3 Presenting to the screen
D3D9 queue
multi-gpu
Misc

4 Gallium Nine internals

5 Performance
Test configuration 1
Test configuration 2
Conclusion

6 Plans for the future



Native D3D9 on Mesa Gallium Nine : the status
Performance
Test configuration 1

laptop
Intel(R) Core(TM) i5-3210M CPU @ 2.50GHz
Amd HD 7730M (Slowest GCN card !)

OS:
Win 7
Ubuntu 14.10
Arch Linux, Mesa Ixit git + llvm SI scheduler + dma
copy enabling patch

This is a GPU limited scenario.
Under Win, the Amd card is maximum 2x better than the Intel
card, but it is only reached for heavy games (Skyrim, etc)



Native D3D9 on Mesa Gallium Nine : the status
Performance
Test configuration 1

OS Intel card Amd card
Win 83 85

Ubuntu Native 55 60
Arch nine with SI scheduler NA 89

Arch nine without SI scheduler NA 80
Arch wine with SI scheduler 50 63

Arch wine without SI scheduler 50 56

Frames per Second (fps) on Portal
on the same scene with same settings (Mid)

Sorry, couldn’t test more on this machine. But as additional info,
Skyrim looks like 75% of win perf under Arch nine. (And more like
50% for Wine)



Native D3D9 on Mesa Gallium Nine : the status
Performance
Test configuration 2

Intel i5 3330
Amd HD 7790

OS:
opensuze factory, Mesa Ixit git

Note:
tests with WINEDEBUG=-all, cpu on performance governor
This is a more CPU limited scenario.



Native D3D9 on Mesa Gallium Nine : the status
Performance
Test configuration 2

Figure: Gallium Hud under nine.
Harvest Massive Encounter

Figure: Gallium Hud under wine.
Harvest Massive Encounter



Native D3D9 on Mesa Gallium Nine : the status
Performance
Test configuration 2

Figure: Gallium Hud under nine.
Harvest Massive Encounter

Figure: Gallium Hud under wine
csmt.
Harvest Massive Encounter



Native D3D9 on Mesa Gallium Nine : the status
Performance
Test configuration 2

Figure: Gallium Hud under nine.
Kingdoms of Amalur Reckoning

Figure: Gallium Hud under wine.
Kingdoms of Amalur Reckoning



Native D3D9 on Mesa Gallium Nine : the status
Performance
Test configuration 2

Figure: Gallium Hud under nine.
Kingdoms of Amalur Reckoning

Figure: Gallium Hud under wine
csmt.
Kingdoms of Amalur Reckoning



Native D3D9 on Mesa Gallium Nine : the status
Performance
Test configuration 2

Figure: Gallium Hud under nine.
Legend Of Grimrock 2

Figure: Gallium Hud under wine.
Legend Of Grimrock 2



Native D3D9 on Mesa Gallium Nine : the status
Performance
Test configuration 2

Figure: Gallium Hud under nine.
Legend Of Grimrock 2

Figure: Gallium Hud under wine
csmt.
Legend Of Grimrock 2



Native D3D9 on Mesa Gallium Nine : the status
Performance
Test configuration 2

Figure: Gallium Hud under nine.
Poker Night 2

Figure: Gallium Hud under wine.
Poker Night 2



Native D3D9 on Mesa Gallium Nine : the status
Performance
Test configuration 2

Figure: Gallium Hud under nine.
Poker Night 2

Figure: Gallium Hud under wine
csmt.
Poker Night 2



Native D3D9 on Mesa Gallium Nine : the status
Performance
Test configuration 2

Figure: Gallium Hud under nine.
Skyrim

Figure: Gallium Hud under wine.
Skyrim



Native D3D9 on Mesa Gallium Nine : the status
Performance
Test configuration 2

Figure: Gallium Hud under nine.
Skyrim

Figure: Gallium Hud under wine
csmt.
Skyrim



Native D3D9 on Mesa Gallium Nine : the status
Performance
Conclusion

When Nine works, it’s usually faster than Wine.
Lower cpu usage



Native D3D9 on Mesa Gallium Nine : the status
Plans for the future

Plan

1 Introduction

2 Wine integration

3 Presenting to the screen
D3D9 queue
multi-gpu
Misc

4 Gallium Nine internals

5 Performance
Test configuration 1
Test configuration 2
Conclusion

6 Plans for the future



Native D3D9 on Mesa Gallium Nine : the status
Plans for the future

Wine vs Nine

Both Wine and Nine have bugs on some games (graphical bugs,
games not launching, etc)
Currently Wine gets more games to work (but Nine manages to
run games wine cannot run properly)

A fast, well-working Wine is better than everything else. But hard!
Better than working on d3d1x state trackers, it would be better
help wine with GL extensions.
⇒ But in the next few years, we expect Gallium Nine to still beat
Wine.



Native D3D9 on Mesa Gallium Nine : the status
Plans for the future

Merging Nine support into Wine

Currently Mesa >= 10.4 have Gallium Nine support. But it needs
special code Wine side.

One needs to compile a special branch of Wine → not easy for
users!

We have now PlayOnLinux support, and we could be integrated to
wine staging in the near future.



Native D3D9 on Mesa Gallium Nine : the status
Plans for the future

This is the end...

Thanks for your attention.

Questions ?


	Introduction
	Wine integration
	Presenting to the screen
	D3D9 queue
	multi-gpu
	Misc

	Gallium Nine internals
	Performance
	Test configuration 1
	Test configuration 2
	Conclusion

	Plans for the future

