

Nathan Egge <negge@mozilla.com> (Xiph.org, Mozilla)

FOSDEM: Open Media devroom 31 January 2015

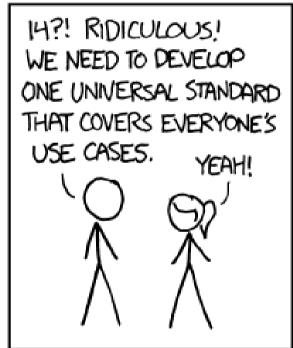
Why Free Codecs Matter

...that's "Free" with a capital F

- "Free" refers to control, not [just] cost
- Encumbered codecs are a billion dollar toll-tax on communications tools
- Codec licensing is used as weaponry in competitive battles
 - Licensing regimes are universally discriminatory
- The success of the Internet was based on innovation without asking permission

Why Free Codecs Matter

(continued)


...or begging forgiveness

- Many applications can't tolerate any codec licensing costs at all
 - even the cost of just counting the users is too much
- Ignoring the licensing creates risks that can show up at any time
 - a tax on success
- Compatibility is usually the big cost, not CPU, bandwidth, etc.

HOW STANDARDS PROLIFERATE: (SEE: A/C CHARGERS, CHARACTER ENCODINGS, INSTANT MESSAGING, ETC.)

SITUATION: THERE ARE 14 COMPETING STANDARDS.

SOON:

SITUATION: THERE ARE 15 COMPETING STANDARDS

http://xkcd.com/927/

...but that's missing the usual motivations behind new codecs!

More and More Codecs

- An organization can't license an encumbered codec when there's no acceptable license offered
- Building a new codec from scratch may cost less than licensing
- Adversarial licensing is a risk in a competitive market
 - FRAND is often none of Fair, Reasonable, or Non-Discriminatory

Changing the Game

- Creating good codecs isn't easy...
 - But we don't need many. Without weird competitive pressures the whole world can cooperate
 - Best implementations of the patented codecs are already often the free software ones
- Where RF is established non-free codecs see no adoption. See: JPEG. Network effect decides
- Unfortunately many different people care about many different things
- Convincing everyone means being better in almost every way, not just one or two

Strategy is Essential

- Design alternatives to avoid the worst patent thickets
- Read and analyze patents, and publish the results
- Patent the new technology we develop
- Use a patent license that encourages adoption and discourages defection
- Target next-next-generation to avoid rushing to market
- Document, document, document!
 - "the whole point of a Doomsday Machine is lost if you keep it a secret."

Strategy is Essential: These Parts Will Be Hard

- Be best-in-class or go home
- Woo competitors and critics
 - especially those who think they're allies
- Find new niches, uses, applications that are unoccupied and fill them
- Hardware Support

Next Generation Video: Daala

- Lets take some of the strategy that worked in Opus, and apply it to video:
 - Work in a public process in a recognized SDO with a strong IPR disclosure policy and Opus-like patent licensing
 - Question assumptions in the conventional structure of video codecs, no sacred cows
 - Target applications where high flexibility is essential
 - optimize for perception not PSNR

30 Second Introduction to Video Coding

Most video codecs use the same basic ideas:

- Prediction: Consider what you know about previous or typical content to predict future data
- Transformation: Rearrange the information to make it more compressible
- Quantization: Strategically lower the resolution of the transformed data
- Entropy coding: Code the quantized data taking probability distribution into account

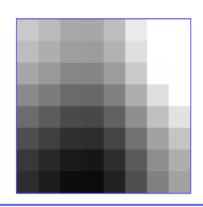
30 Second Introduction to Video Coding: Prediction

- Intra-Prediction: Predict portions of the current frame from already decoded portions of the current frame
- Inter-Prediction: Predict portions of the current frame from previous decoded frames
 - Motion Compensation to eliminate temporal redundancy

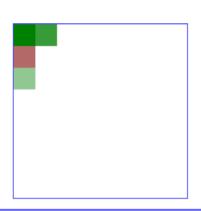
Input

Θ

Reference frame



Residual


30 Second Introduction to Video Coding: Transformation

 Map spatial pixel values into some other more compressible representation via a 2D transform, usually the DCT.

Original pixel data												
114	108	100	99	109	129	152	166					
109	102	95	94	104	124	146	161					
99	93	85	84	94	114	137	151					
86	80	72	71	82	102	124	138					
73	66	58	57	68	88	110	125					
60	53	46	45	55	75	97	112					
50	43	36	35	45	65	88	102					
45	38	31	30	40	60	82	97					

DCT coefficient data												
700	200	0	0	0	0	0	0					
-150	0	0	0	0	0	0	0					
110	0	0	0	0	0	0	0					
0	0	0	0	0	0	0	0					
0	0	0	0	0	0	0	0					
0	0	0	0	0	0	0	0					
0	0	0	0	0	0	0	0					
0	0	0	0	0	0	0	0					

30 Second Introduction to Video Coding: Quantization and Coding

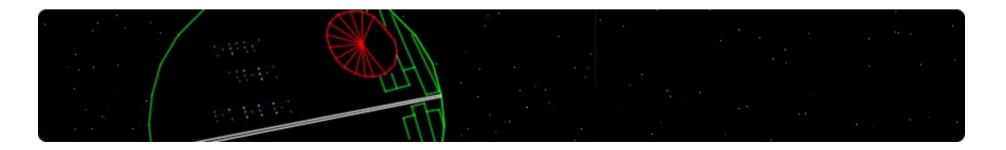
- **Quantization**: Compute the difference remaining after prediction, then lower its resolution.
 - This is the lossy part
- **Coding**: The quantized error signal is (hopefully) random numbers from some probability distribution.
 - Pack it efficiently into the bitstream

- Lapped transforms rather than traditional DCT
 - Implemented via reversible lifting
- Multisymbol arithmetic encoding
- Perceptual vector quantization
- Chroma plane prediction from luma planes
- Overlapping-block motion compensation
- Time-frequency resolution switching

Recent Work / Updates

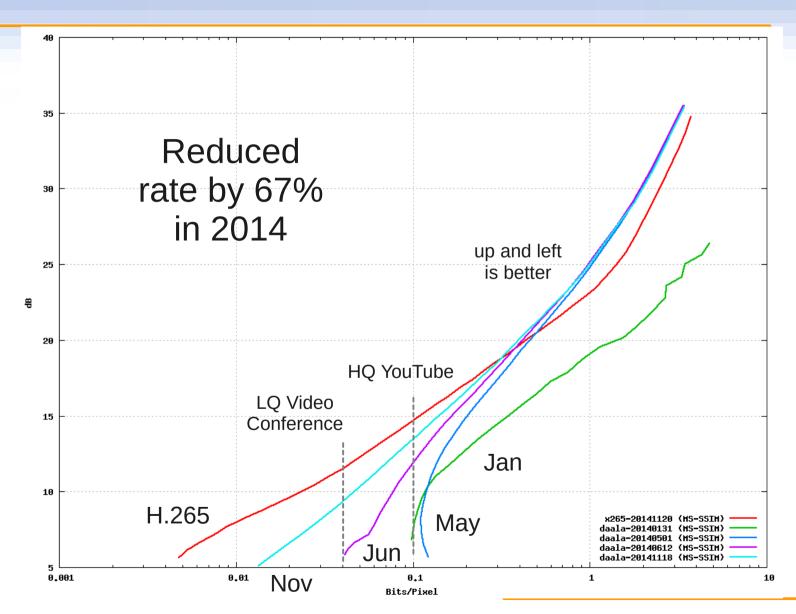
Technology demo pages document and explain many of these techniques in more detail:

Next generation video: Introducing Daala


Introducing Daala part 2: Frequency Domain Intra Prediction

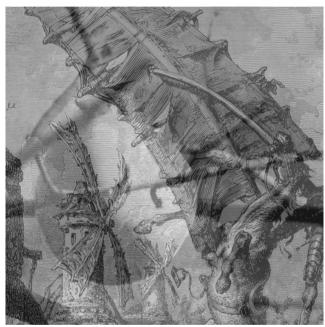
Introducing Daala part 3: Time/Frequency Resolution Switching

Introducing Daala part 4: Chroma from Luma


Daala demo 5: Painting Images For Fun (and Profit?)

Daala demo 6: Perceptual Vector Quantization (PVQ)

Daala Progress in 2014



Today's Formats Are a Long Way From Exhausting the Possible

How about unblending a cross-fade?

Spatial Sparsity-Induced Prediction for Images and Video: A Simple Way to Reject Structured Interference Gang Hua and Onur G. Guleryuz (2011)

The Road Ahead

- The techniques we've been working with appear to work, but there is much to be done
- Industry is currently distracted figuring out how they're going to deploy HEVC (and VP9)
- Your participation is welcome!
 - http://xiph.org/daala
- Opus benefited from some applications served by no other audio codec.
 - Does something similar exist for video?

Daala: Additional Resources

- Wiki: http://www.xiph.org/daala
- Mailing list: daala@xiph.org
- IRC: #daala on irc.freenode.net
- Git repository: git://git.xiph.org/daala.git

Questions?