
The FLK project

2 Feb 2015 http://flhq.org 2

My first idea was to write a L4 kernel using the
EIFFEL langage.

But ...

2 Feb 2015 http://flhq.org 3

① While reading references on the SECURITY
topic, it became evident that handling security by

the software was an interesting challenge.

2 Feb 2015 http://flhq.org 4

② It is difficult to find examples of secure kernel
using the FLAT memory model (for processors

without MMU – MMUs drain current –). That
shows that there is an interesting challenge.

2 Feb 2015 http://flhq.org 5

③ The thread/process model does not fit the
SCOOP model because of the costs :

- in MEMORY (for stacks)
- in TIME (for context switches)

2 Feb 2015 http://flhq.org 6

S imple

C oncurrent

O bject

O riented

P rogramming

An overview...

2 Feb 2015 http://flhq.org 7

Few terminology

● A processor is a set of objects within a same
memory manager and with the guaranty that
methods of the objects are executed “as single
threaded”

● Objects of a processor can invoke object of
other processors, such “remote” objects are
called separate objects, they belong in a
separate processor

2 Feb 2015 http://flhq.org 8

-- DO YOU KNOW EIFFEL LANGUAGE ?
-- this is a simple FIFO description

deferred class FIFO[X] feature

 empty: BOOLEAN deferred end

 full: BOOLEAN deferred end

 put(x: X) require not full deferred ensure not empty end

 item: X require not empty deferred end

 drop require not empty deferred ensure not full end

invariant

 at_least_one_element: not (empty and full)

end

2 Feb 2015 http://flhq.org 9

-- this is an abstract of a simple client
class CLIENT
 ...

 order_task(q: separate FIFO[separate TASK]; t: separate TASK)

 require not q.full do q.put(t) end

 ...

end

-- this is an abstract of a simple server
class SERVER
 ...

 next_task(q: separate FIFO[separate TASK]): separate TASK

 require not q.empty do Result := q.item ; q.drop end

 ...

end

2 Feb 2015 http://flhq.org 10

Client

Client

Client

SERVERFIFO

Using POSIX system, this
is often made using UDS

(unix domain socket)

Having a process/thread for
such a small processor is

NOT WANTED

But SCOOP tends to favor
such small processors

2 Feb 2015 http://flhq.org 11

FLK principle

● Processors are nor processes neither threads
● Processors gain their single execution context on

need and release it when not more need
● When invoking a separate object:

– Either, the current execution context is lent to the called
processor in case of query (having a result)

– Or, a new execution context is created in case of
command (not having result)

● Optimizations can modify the previous rule

2 Feb 2015 http://flhq.org 12

In red, the
execution
contexts

In blue, the processors

Summary

This call waits

2 Feb 2015 http://flhq.org 13

A failure case

2 Feb 2015 http://flhq.org 14

Acquiring many processors

exchg(a, b: separate C)

 local x: X

 do x := a.item ; a.put(b.item) ; b.put(x)

 ensure a.item = old b.item ; b.item = old a.item

end

● The acquiring of multiple processors is granted by the
system and the compiler in a safe way

● An implementation compatible with distributed system
(Rhee lock) can be used if needed

2 Feb 2015 http://flhq.org 15

Safety

● EIFFEL language is safe:
– No peek / poke

– Array boundaries are checked

– Calling void reference is not possible

– Wrong casting of objects is not possible

– The memory is managed (GC, no “free”)

● SCOOP is safe:
– Separate objects are tracked and not alterable

● No IPC, no IDL: consistency by the compiler

2 Feb 2015 http://flhq.org 16

feature {UNSAFE_KERNEL}

 ... some unsafe features only for FLK ...

feature {UNSAFE_SYSTEM}

 ... some restricted features only for system components ...

Wait a minute.... FLK is written using EIFFEL thus how is it
possible if the language doesn't allow peek/poke/casting?

EIFFEL provides selective exportation of features.

This mechanism is enforced by the language and the compiler is improved to
forbid inheritance of critical classes either outside of a cluster of classes or
without integrator authorization

The compiler allow in fact peek/poke/casting but in a VERY RESTRICTED way

2 Feb 2015 http://flhq.org 17

Security at API level

● Using the exportation feature of EIFFEL and the
compiler FLC:
– Features are selectively exported to specific client

classes

– Such authorized client classes can be:
● not inheritable and not insertable outside a given context
● Inheritable (or insertable) with integrator/user

authorisation (when compiling or installing)
● Inheritable or insertable as usual

2 Feb 2015 http://flhq.org 18

FLK

System

Compiler

UNSAFE

DANGEROUS

SAFE

Compiler
library

Application
library

applications
Kind of

simplified
overview

2 Feb 2015 http://flhq.org 19

MEMORY

● The memory is managed. That is in the language
and it is done at the kernel level.

● Each processor has its memory manager
● Any pointer maps to a unique memory manager

that maps to a unique processor: that is used to
identify the processor of the separate objects

● Mechanic of the keyword separate and safety of
the language allows to not protect memory using
MMU

2 Feb 2015 http://flhq.org 20

MMU?

● Using static analysis of code, the size need by the stack
can be pre-computed for each processor entry method
(recursivity...) thus MMU is not strictly needed for stacks

● But MMU can be useful for:
– STACK

– FILE MAPPING

– LARGE DYNAMIC ARRAYS

– FOREIGN LIBRARIES

● If used, MMU is global (not per processor)

2 Feb 2015 http://flhq.org 21

Context switch

When a method of a separate object is called, the
execution context should:
– On a query:

● Set the current processor to the one called, this activates its memory
manager

● Revert at end of the call
● No task switch

– On a command:
● Activate a new execution context for the called processor
● Can be optimised

– No memory switch (MMU)

2 Feb 2015 http://flhq.org 22

Life cycle

● Processors are created using the create
keyword

● Processors die when
– It is not in an execution context

– It has no client (no other processor reference it)

● Processors are GARBAGE COLLECTED
● Starve conditions are detected and generate

exceptions

Feb 2, 2015 http://flhq.org 23

Client

Client

Client

SERVERFIFO

Execution context

FIFO has 4 clients
FIFO is alive

Feb 2, 2015 http://flhq.org 24

SERVERFIFO

Execution context

FIFO has 1 client
FIFO is alive

AFTER CLIENTS
DEATH

Alive because execution context
But waiting on
require not fifo.empty

FLK SENDS AN EXCEPTION TO
THE SERVER TO SIGNAL THAT
ITS WAITING IS UNUSEFUL

Where FIFO has only one client
Thus, server is dead because
FIFO can't change

Feb 2, 2015 http://flhq.org 25

Optimisation

● EIFFEL is making compilation of whole systems
(no linking is needed)

● Frozen keyword allows more optimisation
● Some creation of execution contexts can be

removed
● Unused components are removed from the

binary set

Feb 2, 2015 http://flhq.org 26

Challenge 1: coupling of the
memory management using
compacting GC at kernel, system
and application level

Challenge 2: improved
security at API level
without using capabilities
(static)

Challenge 3: optimisation of
activations, avoid creating a new
context when possible (using
frozen)

Challenge 4: allowing
downsizing for tiny
embedded environments

Challenge 5: create
standard on semantic of
separate and implements
some of its tricky items

Challenge 6: avoid linker
paradigm

Challenge 7: prove the safety, the security, the efficiency

Feb 2, 2015 http://flhq.org 27

BACK TO th
e
R ea

L iT
Y

How many drivers?

How many supported platforms?

How many code reusable?

How much money?

How many people?

Feb 2, 2015 http://flhq.org 28

planning

● Finish the compiler end of 2015, opening code
ASAP

● RFCs process for FLK starting in spirng 2015
● First implementation of FLK on top of an other

kernel in 2016
● Help wanted? YES YES YES

– Coding, specifying, financing, research, students,
how to integrate existing C drivers

Feb 2, 2015 http://flhq.org 29

QUESTIONS

sopox@flhq.org

	Diapo 1
	Diapo 2
	Diapo 3
	Diapo 4
	Diapo 5
	Diapo 6
	Diapo 7
	Diapo 8
	Diapo 9
	Diapo 10
	Diapo 11
	Diapo 12
	Diapo 13
	Diapo 14
	Diapo 15
	Diapo 16
	Diapo 17
	Diapo 18
	Diapo 19
	Diapo 20
	Diapo 21
	Diapo 22
	Diapo 23
	Diapo 24
	Diapo 25
	Diapo 26
	Diapo 27
	Diapo 28
	Diapo 29

