
zcourts.com

Tesseract

Distributed Graph Database
FOSDEM 2015

1

Courtney Robinson 
courtney@zcourts.com 

31 Jan 2015
Background from Gephi

http://zcourts.com
mailto:courtney@zcourts.com

zcourts.com

• I can be found around the web as “zcourts”, Google it…
• The web is one very prominent example of a graph
• Too big for a single machine
• So we must split or “partition” it over multiple
• Partitioning is hard…in fact, it has been shown to be np-

complete
• All we can do is edge closer to more “optimal” solutions
• The Tesseract is an ongoing research project
• Its focus is on distributed graph partitioning
• The rest of this presentation is a series of solutions, which

together, takes one step closer to faster distributed graph
processing

2

http://zcourts.com

zcourts.com

Graph - A graph G is made up of a set of vertices and edges,
G = (V,E) 

 
 

Vertex - Smallest unit of user accessible datum 

Edge - Connects two vertices, may have a direction  

Property - Key value pair available on an Edge or Vertex  

3

V1
V6V4

V5
V2

V3

V7

Terminology

http://zcourts.com

zcourts.com

Aims of the Tesseract

1. Implement distributed eventually consistent graph
database 

2. Develop a distributed graph partitioning algorithm  

3. Develop a computational model able to support both
real time and batch processing on a distributed
graph

4

http://zcourts.com

zcourts.com

Aims of the Tesseract

1. Implement distributed eventually
consistent graph database  

2. Develop a distributed graph partitioning algorithm  

3. Develop a computational model able to support both
real time and batch processing on a distributed
graph

5

http://zcourts.com

zcourts.com

CRDTs…in one slideTM

6

http://zcourts.com

zcourts.com

CRDTs…in one slideTM

Conflict free replicated data types

6

http://zcourts.com
http://hal.upmc.fr/file/index/docid/555588/filename/techreport.pdf

zcourts.com

CRDTs…in one slideTM

Conflict free replicated data types
i.e provably eventually consistent (Shapiro et al) replicated & distributed data
structures. 

6

http://zcourts.com
http://hal.upmc.fr/file/index/docid/555588/filename/techreport.pdf

zcourts.com

CRDTs…in one slideTM

Conflict free replicated data types
i.e provably eventually consistent (Shapiro et al) replicated & distributed data
structures. 

(1+2) + 3 = 1 + (2+3)

6

Associative

http://zcourts.com
http://hal.upmc.fr/file/index/docid/555588/filename/techreport.pdf

zcourts.com

CRDTs…in one slideTM

Conflict free replicated data types
i.e provably eventually consistent (Shapiro et al) replicated & distributed data
structures. 

(1+2) + 3 = 1 + (2+3)
1 + 2 = 2 + 1

6

Associative

Commutative

http://zcourts.com
http://hal.upmc.fr/file/index/docid/555588/filename/techreport.pdf

zcourts.com

CRDTs…in one slideTM

Conflict free replicated data types
i.e provably eventually consistent (Shapiro et al) replicated & distributed data
structures. 

(1+2) + 3 = 1 + (2+3)
1 + 2 = 2 + 1

1 + 1 ≠1

6

Associative

Commutative
Not Idempotent

http://zcourts.com
http://hal.upmc.fr/file/index/docid/555588/filename/techreport.pdf

zcourts.com

CRDTs…in one slideTM

Conflict free replicated data types
i.e provably eventually consistent (Shapiro et al) replicated & distributed data
structures. 

(1+2) + 3 = 1 + (2+3)
1 + 2 = 2 + 1

1 + 1 ≠1

6

Associative

Commutative
Not Idempotent

http://zcourts.com
http://hal.upmc.fr/file/index/docid/555588/filename/techreport.pdf

zcourts.com

CRDTs…in one slideTM

Conflict free replicated data types
i.e provably eventually consistent (Shapiro et al) replicated & distributed data
structures. 

(1+2) + 3 = 1 + (2+3)
1 + 2 = 2 + 1

1 + 1 ≠1

Unfortunately addition isn’t enough. The CIA properties are required to have a
CRDT

6

Associative

Commutative
Not Idempotent

http://zcourts.com
http://hal.upmc.fr/file/index/docid/555588/filename/techreport.pdf

zcourts.com

CRDTs…in one slideTM

Conflict free replicated data types
i.e provably eventually consistent (Shapiro et al) replicated & distributed data
structures. 

(1+2) + 3 = 1 + (2+3)
1 + 2 = 2 + 1

1 + 1 ≠1

Unfortunately addition isn’t enough. The CIA properties are required to have a
CRDT

Luckily, graphs can be represented by a common mathematical structure which
exhibits all 3 properties… Sets!

6

Associative

Commutative
Not Idempotent

http://zcourts.com
http://hal.upmc.fr/file/index/docid/555588/filename/techreport.pdf

zcourts.com

CRDTs…in one slideTM

Conflict free replicated data types
i.e provably eventually consistent (Shapiro et al) replicated & distributed data
structures. 

(1+2) + 3 = 1 + (2+3)
1 + 2 = 2 + 1

1 + 1 ≠1

Unfortunately addition isn’t enough. The CIA properties are required to have a
CRDT

Luckily, graphs can be represented by a common mathematical structure which
exhibits all 3 properties… Sets!

6

Associative

Commutative
Not Idempotent

http://zcourts.com
http://hal.upmc.fr/file/index/docid/555588/filename/techreport.pdf

zcourts.com

CRDTs…in one slideTM

Conflict free replicated data types
i.e provably eventually consistent (Shapiro et al) replicated & distributed data
structures. 

(1+2) + 3 = 1 + (2+3)
1 + 2 = 2 + 1

1 + 1 ≠1

Unfortunately addition isn’t enough. The CIA properties are required to have a
CRDT

Luckily, graphs can be represented by a common mathematical structure which
exhibits all 3 properties… Sets!

Addition with sets is done using ∪ 

6

Associative

Commutative
Not Idempotent

http://zcourts.com
http://hal.upmc.fr/file/index/docid/555588/filename/techreport.pdf

zcourts.com

CRDTs…in one slideTM

Conflict free replicated data types
i.e provably eventually consistent (Shapiro et al) replicated & distributed data
structures. 

(1+2) + 3 = 1 + (2+3)
1 + 2 = 2 + 1

1 + 1 ≠1

Unfortunately addition isn’t enough. The CIA properties are required to have a
CRDT

Luckily, graphs can be represented by a common mathematical structure which
exhibits all 3 properties… Sets!

Addition with sets is done using ∪ 

(1 ∪ 2) ∪ 3 = 1 ∪ (2 ∪ 3)

6

Associative

Commutative
Not Idempotent

Associative

http://zcourts.com
http://hal.upmc.fr/file/index/docid/555588/filename/techreport.pdf

zcourts.com

CRDTs…in one slideTM

Conflict free replicated data types
i.e provably eventually consistent (Shapiro et al) replicated & distributed data
structures. 

(1+2) + 3 = 1 + (2+3)
1 + 2 = 2 + 1

1 + 1 ≠1

Unfortunately addition isn’t enough. The CIA properties are required to have a
CRDT

Luckily, graphs can be represented by a common mathematical structure which
exhibits all 3 properties… Sets!

Addition with sets is done using ∪ 

(1 ∪ 2) ∪ 3 = 1 ∪ (2 ∪ 3)
1 ∪ 2 = 2 ∪ 1

6

Associative

Commutative
Not Idempotent

Associative

Commutative

http://zcourts.com
http://hal.upmc.fr/file/index/docid/555588/filename/techreport.pdf

zcourts.com

CRDTs…in one slideTM

Conflict free replicated data types
i.e provably eventually consistent (Shapiro et al) replicated & distributed data
structures. 

(1+2) + 3 = 1 + (2+3)
1 + 2 = 2 + 1

1 + 1 ≠1

Unfortunately addition isn’t enough. The CIA properties are required to have a
CRDT

Luckily, graphs can be represented by a common mathematical structure which
exhibits all 3 properties… Sets!

Addition with sets is done using ∪ 

(1 ∪ 2) ∪ 3 = 1 ∪ (2 ∪ 3)
1 ∪ 2 = 2 ∪ 1

1 ∪ 1 = 1
6

Associative

Commutative
Not Idempotent

Associative

Commutative
Idempotent!

http://zcourts.com
http://hal.upmc.fr/file/index/docid/555588/filename/techreport.pdf

zcourts.com

I lied, two slides…TM?

7

http://zcourts.com

zcourts.com

I lied, two slides…TM?

• Several types of CRDTs are available.

7

http://zcourts.com

zcourts.com

I lied, two slides…TM?

• Several types of CRDTs are available.
• They provide us with “Strong Eventual Consistency”

i.e. given states propagate we’re provably guaranteed
to converge.

7

http://zcourts.com

zcourts.com

I lied, two slides…TM?

• Several types of CRDTs are available.
• They provide us with “Strong Eventual Consistency”

i.e. given states propagate we’re provably guaranteed
to converge.

• OR-set i.e. “Observed Removed”…add wins!

7

http://zcourts.com

zcourts.com

I lied, two slides…TM?

• Several types of CRDTs are available.
• They provide us with “Strong Eventual Consistency”

i.e. given states propagate we’re provably guaranteed
to converge.

• OR-set i.e. “Observed Removed”…add wins!

7

S1

S2

S3

s
{}

{}

{}

= insert = merge = replicate = remove

http://zcourts.com

zcourts.com

I lied, two slides…TM?

• Several types of CRDTs are available.
• They provide us with “Strong Eventual Consistency”

i.e. given states propagate we’re provably guaranteed
to converge.

• OR-set i.e. “Observed Removed”…add wins!

7

S1

S2

S3

s
{}

{}

{}

add(a)

= insert = merge = replicate = remove

http://zcourts.com

zcourts.com

I lied, two slides…TM?

• Several types of CRDTs are available.
• They provide us with “Strong Eventual Consistency”

i.e. given states propagate we’re provably guaranteed
to converge.

• OR-set i.e. “Observed Removed”…add wins!

7

S1

S2

S3

s
{}

{}

{}

add(a)

{aπ}

= insert = merge = replicate = remove

http://zcourts.com

zcourts.com

I lied, two slides…TM?

• Several types of CRDTs are available.
• They provide us with “Strong Eventual Consistency”

i.e. given states propagate we’re provably guaranteed
to converge.

• OR-set i.e. “Observed Removed”…add wins!

7

S1

S2

S3

s
{}

{}

{}

add(a)

{aπ}

add(a)

{aλ}

= insert = merge = replicate = remove

http://zcourts.com

zcourts.com

I lied, two slides…TM?

• Several types of CRDTs are available.
• They provide us with “Strong Eventual Consistency”

i.e. given states propagate we’re provably guaranteed
to converge.

• OR-set i.e. “Observed Removed”…add wins!

7

S1

S2

S3

s
{}

{}

{}

add(a)

{aπ}

add(a)

{aλ}

{aλ}

{aλ}

= insert = merge = replicate = remove

http://zcourts.com

zcourts.com

I lied, two slides…TM?

• Several types of CRDTs are available.
• They provide us with “Strong Eventual Consistency”

i.e. given states propagate we’re provably guaranteed
to converge.

• OR-set i.e. “Observed Removed”…add wins!

7

S1

S2

S3

s
{}

{}

{}

add(a)

{aπ}

add(a)

{aλ}

{aλ} {aλ,aπ}

{aλ}

{aπ}

= insert = merge = replicate = remove

http://zcourts.com

zcourts.com

I lied, two slides…TM?

• Several types of CRDTs are available.
• They provide us with “Strong Eventual Consistency”

i.e. given states propagate we’re provably guaranteed
to converge.

• OR-set i.e. “Observed Removed”…add wins!

7

S1

S2

S3

s
{}

{}

{}

add(a)

{aπ}

add(a)

{aλ}

{aλ} {aλ,aπ}

Each node adds “a”
with a unique tag

locally

{aλ}

{aπ}

= insert = merge = replicate = remove

http://zcourts.com

zcourts.com

I lied, two slides…TM?

• Several types of CRDTs are available.
• They provide us with “Strong Eventual Consistency”

i.e. given states propagate we’re provably guaranteed
to converge.

• OR-set i.e. “Observed Removed”…add wins!

7

S1

S2

S3

s
{}

{}

{}

add(a)

{aπ}

add(a)

{aλ}

{aλ} {aλ,aπ}

{aλ}

{aπ}

= insert = merge = replicate = remove

http://zcourts.com

zcourts.com

I lied, two slides…TM?

• Several types of CRDTs are available.
• They provide us with “Strong Eventual Consistency”

i.e. given states propagate we’re provably guaranteed
to converge.

• OR-set i.e. “Observed Removed”…add wins!

7

S1

S2

S3

s
{}

{}

{}

add(a)

{aπ}

add(a)

{aλ}

{aλ} {aλ,aπ}

del(a)

{-aπ}

{aλ}

{aπ}

= insert = merge = replicate = remove

http://zcourts.com

zcourts.com

I lied, two slides…TM?

• Several types of CRDTs are available.
• They provide us with “Strong Eventual Consistency”

i.e. given states propagate we’re provably guaranteed
to converge.

• OR-set i.e. “Observed Removed”…add wins!

7

S1

S2

S3

s
{}

{}

{}

add(a)

{aπ}

add(a)

{aλ}

{aλ} {aλ,aπ}

del(a)

{aλ,-aπ}

{-aπ}

{-aπ}

{aλ}

{aπ}

= insert = merge = replicate = remove

http://zcourts.com

zcourts.com

I lied, two slides…TM?

• Several types of CRDTs are available.
• They provide us with “Strong Eventual Consistency”

i.e. given states propagate we’re provably guaranteed
to converge.

• OR-set i.e. “Observed Removed”…add wins!

7

S1

S2

S3

s
{}

{}

{}

add(a)

{aπ}

add(a)

{aλ}

{aλ} {aλ,aπ}

del(a)

{aλ,-aπ}

{-aπ}

{-aπ}

{aλ}

{aπ}

Mark only -aπ as
deleted.

= insert = merge = replicate = remove

http://zcourts.com

zcourts.com

I lied, two slides…TM?

• Several types of CRDTs are available.
• They provide us with “Strong Eventual Consistency”

i.e. given states propagate we’re provably guaranteed
to converge.

• OR-set i.e. “Observed Removed”…add wins!

7

S1

S2

S3

s
{}

{}

{}

add(a)

{aπ}

add(a)

{aλ}

{aλ} {aλ,aπ}

del(a)

{aλ,-aπ}

{-aπ}

{-aπ}

{aλ}

{aπ}

= insert = merge = replicate = remove

http://zcourts.com

zcourts.com

I lied, two slides…TM?

• Several types of CRDTs are available.
• They provide us with “Strong Eventual Consistency”

i.e. given states propagate we’re provably guaranteed
to converge.

• OR-set i.e. “Observed Removed”…add wins!

7

S1

S2

S3

s
{}

{}

{}

add(a)

{aπ}

add(a)

{aλ}

{aλ} {aλ,aπ}

del(a)

{aλ,-aπ}

{-aπ}

{-aπ}

{aλ}

{aπ}
{aλ,-aπ}

= insert = merge = replicate = remove

http://zcourts.com

zcourts.com

I lied, two slides…TM?

• Several types of CRDTs are available.
• They provide us with “Strong Eventual Consistency”

i.e. given states propagate we’re provably guaranteed
to converge.

• OR-set i.e. “Observed Removed”…add wins!

7

S1

S2

S3

s
{}

{}

{}

add(a)

{aπ}

add(a)

{aλ}

{aλ} {aλ,aπ}

del(a)

{aλ,-aπ}

{-aπ}

{-aπ}

{aλ}

{aπ}
{aλ,-aπ}

{aλ,-aπ}

= insert = merge = replicate = remove

http://zcourts.com

zcourts.com

I lied, two slides…TM?

• Several types of CRDTs are available.
• They provide us with “Strong Eventual Consistency”

i.e. given states propagate we’re provably guaranteed
to converge.

• OR-set i.e. “Observed Removed”…add wins!

7

S1

S2

S3

s
{}

{}

{}

add(a)

{aπ}

add(a)

{aλ}

{aλ} {aλ,aπ}

del(a)

{aλ,-aπ}

{-aπ}

{-aπ}

{aλ}

{aπ}
{aλ,-aπ}

{aλ,-aπ}

Merge takes symmetrical
difference of the local and
remote sets resulting in aλ

being in the set

= insert = merge = replicate = remove

http://zcourts.com

zcourts.com

I lied, two slides…TM?

• Several types of CRDTs are available.
• They provide us with “Strong Eventual Consistency”

i.e. given states propagate we’re provably guaranteed
to converge.

• OR-set i.e. “Observed Removed”…add wins!

7

S1

S2

S3

s
{}

{}

{}

add(a)

{aπ}

add(a)

{aλ}

{aλ} {aλ,aπ}

del(a)

{aλ,-aπ}

{-aπ}

{-aπ}

{aλ}

{aπ}
{aλ,-aπ}

{aλ,-aπ}

{aλ}

{aλ}

Merge takes symmetrical
difference of the local and
remote sets resulting in aλ

being in the set

= insert = merge = replicate = remove

{aλ}

http://zcourts.com

zcourts.com

I lied, two slides…TM?

• Several types of CRDTs are available.
• They provide us with “Strong Eventual Consistency”

i.e. given states propagate we’re provably guaranteed
to converge.

• OR-set i.e. “Observed Removed”…add wins!

7

S1

S2

S3

s
{}

{}

{}

add(a)

{aπ}

add(a)

{aλ}

{aλ} {aλ,aπ}

del(a)

{aλ,-aπ}

{-aπ}

{-aπ}

{aλ}

{aπ}
{aλ,-aπ}

{aλ,-aπ}

{aλ}

{aλ}

= insert = merge = replicate = remove

{aλ}

http://zcourts.com

zcourts.com

I lied, two slides…TM?

• Several types of CRDTs are available.
• They provide us with “Strong Eventual Consistency”

i.e. given states propagate we’re provably guaranteed
to converge.

• OR-set i.e. “Observed Removed”…add wins!

7

S1

S2

S3

s
{}

{}

{}

add(a)

{aπ}

add(a)

{aλ}

{aλ} {aλ,aπ}

del(a)

{aλ,-aπ}

{-aπ}

{-aπ}

{aλ}

{aπ}
{aλ,-aπ}

{aλ,-aπ}

{aλ}

{aλ}

= insert = merge = replicate = remove

{aλ}

• User never sees tags!
• Query time checks are used to enable DAGs (if violation of DAG constraint is detected

then the runtime simply says the violating edge does not exist and triggers clean up)
• Note,the deleted “a” is optionally kept as a tombstone if the runtime is configured to

support “snapshots”

http://zcourts.com

zcourts.com

Aims of the Tesseract

1. Implement distributed eventually consistent graph
database 

2. Develop a distributed graph partitioning
algorithm  

3. Develop a computational model able to support both
real time and batch processing on a distributed
graph

8

http://zcourts.com

zcourts.com

CRDTs again…because they’re important

• One very important property of a CRDT is:

{a,b,c,d} :⇔ {a,b} ∪ {c,d}

• Those two sets being logically equivalent is a

desirable property

• Enables partitioning (with rendezvous hashing for e.g.)

9

http://zcourts.com

zcourts.com

Naïve “cascading vertices”
• Naïve graph partitioning
• Depends on the query model to make up for its Naïvety
• Uses hashing to place data
• Two cascading algorithms formulated from:  

V = the vertex to cascade  
n = max nodes to cascade across  
ń = auto-determined value of n, using logistics growth model  
d = deg(v) = Degree of V  
e = ⟨∀deg(v) ∈ G⟩ i.e. average degree of all vertices in the graph  
|nV| = Max number of edges per node for a vertex

 i.e. cascading point (min number of edges before cascading occurs)

1. |nV| = d / n - user provides n, split evenly across nodes
2. |nV| = max(d,e) / n - user provides n, split evenly based on d or e

if e is bigger

10

http://zcourts.com

zcourts.com

“Cascading vertices” by example

1111

• Let’s use Twitter followers as an example
• Each letter represents a unique follower

http://zcourts.com

zcourts.com

“Cascading vertices” by example

1111

S1

S2

S3

s
{}

{}

{}

= insert = cascade

• Let’s use Twitter followers as an example
• Each letter represents a unique follower

http://zcourts.com

zcourts.com

“Cascading vertices” by example

1111

S1

S2

S3

s
{}

{}

{}

add(…) x f

= insert = cascade

• Let’s use Twitter followers as an example
• Each letter represents a unique follower

http://zcourts.com

zcourts.com

“Cascading vertices” by example

1111

S1

S2

S3

s
{}

{}

{}

add(…) x f

= insert = cascade

• Let’s use Twitter followers as an example
• Each letter represents a unique follower

add(…) performs a
cascade(deg(V))

http://zcourts.com

zcourts.com

“Cascading vertices” by example

1111

S1

S2

S3

s
{}

{}

{}

add(…) x f

= insert = cascade

• Let’s use Twitter followers as an example
• Each letter represents a unique follower

http://zcourts.com

zcourts.com

“Cascading vertices” by example

1111

S1

S2

S3

s
{}

{}

{}

add(…) x f

{a,b…n/threshold}

= insert = cascade

• Let’s use Twitter followers as an example
• Each letter represents a unique follower

http://zcourts.com

zcourts.com

“Cascading vertices” by example

1111

S1

S2

S3

s
{}

{}

{}

add(…) x f

{a,b…n/threshold}

= insert = cascade

• Let’s use Twitter followers as an example
• Each letter represents a unique follower

{r,s…n/2*threshold}

http://zcourts.com

zcourts.com

“Cascading vertices” by example

1111

S1

S2

S3

s
{}

{}

{}

add(…) x f

{a,b…n/threshold}

= insert = cascade

• Let’s use Twitter followers as an example
• Each letter represents a unique follower

{r,s…n/2*threshold}

cascade(deg(v)) >=
threshold

http://zcourts.com

zcourts.com

“Cascading vertices” by example

1111

S1

S2

S3

s
{}

{}

{}

add(…) x f

{a,b…n/threshold}

= insert = cascade

• Let’s use Twitter followers as an example
• Each letter represents a unique follower

{r,s…n/2*threshold}

http://zcourts.com

zcourts.com

“Cascading vertices” by example

1111

S1

S2

S3

s
{}

{}

{}

add(…) x f

{a,b…n/threshold}
add(…) x f

= insert = cascade

• Let’s use Twitter followers as an example
• Each letter represents a unique follower

{r,s…n/2*threshold}

http://zcourts.com

zcourts.com

“Cascading vertices” by example

1111

S1

S2

S3

s
{}

{}

{}

add(…) x f

{a,b…n/threshold}
add(…) x f

= insert = cascade

• Let’s use Twitter followers as an example
• Each letter represents a unique follower

{r,s…n/2*threshold}

http://zcourts.com

zcourts.com

“Cascading vertices” by example

1111

S1

S2

S3

s
{}

{}

{}

add(…) x f

{a,b…n/threshold}
add(…) x f

= insert = cascade

• Let’s use Twitter followers as an example
• Each letter represents a unique follower

{r,s…n/2*threshold}

{w,x…n/3*threshold}

http://zcourts.com

zcourts.com

“Cascading vertices” by example

1111

S1

S2

S3

s
{}

{}

{}

add(…) x f

{a,b…n/threshold}
add(…) x f

= insert = cascade

• Let’s use Twitter followers as an example
• Each letter represents a unique follower

{r,s…n/2*threshold}
add(…) x f

{w,x…n/3*threshold}

http://zcourts.com

zcourts.com

“Cascading vertices” by example

1111

S1

S2

S3

s
{}

{}

{}

add(…) x f

{a,b…n/threshold}
add(…) x f

= insert = cascade

• Let’s use Twitter followers as an example
• Each letter represents a unique follower

{r,s…n/2*threshold}
add(…) x f

{w,x…n/3*threshold}

http://zcourts.com

zcourts.com

“Cascading vertices” by example

1111

S1

S2

S3

s
{}

{}

{}

add(…) x f

{a,b…n/threshold}
add(…) x f

= insert = cascade

• Let’s use Twitter followers as an example
• Each letter represents a unique follower

{r,s…n/2*threshold}
add(…) x f

{w,x…n/3*threshold}

wrap and repeat

http://zcourts.com

zcourts.com

“Cascading vertices” by example

1111

S1

S2

S3

s
{}

{}

{}

add(…) x f

{a,b…n/threshold}
add(…) x f

= insert = cascade

• Let’s use Twitter followers as an example
• Each letter represents a unique follower

{r,s…n/2*threshold}
add(…) x f

{w,x…n/3*threshold}

http://zcourts.com

zcourts.com

Aims of the Tesseract

1. Implement distributed eventually consistent graph
database 

2. Develop a distributed graph partitioning algorithm  

3. Develop a computational model able to
support both real time and batch
processing on a distributed graph

12

http://zcourts.com

zcourts.com

Distributed computation
Localised calculations

Amortisation

Memoization

13

http://zcourts.com

zcourts.com

Amortisation
• Optimise to perform more “cheap” computations
• This allows us to occasionally pay the cost of more “expensive”

operations such that they computationally balance out
• e.g. Checking data locally on a node vs querying over a

network

7

1

1

1

1

1

1

1

http://zcourts.com

zcourts.com

Amortisation
• Optimise to perform more “cheap” computations
• This allows us to occasionally pay the cost of more “expensive”

operations such that they computationally balance out
• e.g. Checking data locally on a node vs querying over a

network

14

7

1

1

1

1

1

1

1

http://zcourts.com

zcourts.com

Memoization
• Cache the results of computations

• A luxury afforded by immutability
• Sacrifices disk space and memory
• Provides improved query performance

15

http://zcourts.com

zcourts.com

Memoization
• Cache the results of computations

• A luxury afforded by immutability
• Sacrifices disk space and memory
• Provides improved query performance

15

1st
query

Traverse 
n secs

Cache
results

http://zcourts.com

zcourts.com

Memoization
• Cache the results of computations

• A luxury afforded by immutability
• Sacrifices disk space and memory
• Provides improved query performance

15

1st
query

Traverse 
n secs

Cache
results

2nd
query

Cache 
n/r

http://zcourts.com

zcourts.com

Wormhole traversals
• Immutability offers guarantees
• Place markers at every n vertex intervals
• When traversing, don’t visit every vertex, jump to markers

instead.

16

A B C

D

E
F

G

• Markers at A, G, F, D
• By pass B,C,E during traversal, almost halving the time.
• The resulting data has any skipped vertex asynchronously

fetched
• A key part of this is in the use of

“Path summaries”
• Path summary is an optimisation

that enables the runtime to skip
network requests

• Allows traversal to continue
locally and async request is
made to gather the remote
results

follows

follows follows

knows

knows

friends

http://zcourts.com

zcourts.com

Going functional

17

http://zcourts.com

zcourts.com

Going functional
• Early implementation was in Haskell

17

http://zcourts.com

zcourts.com

Going functional
• Early implementation was in Haskell
• Why? Because it did everything I wanted.

17

http://zcourts.com

zcourts.com

Going functional
• Early implementation was in Haskell
• Why? Because it did everything I wanted.
• Later realised it’s not Haskell in particular I wanted

• …but its semantics
• Immutability
• Purity
• and some other stuff
• and, well…functions!

17

http://zcourts.com

zcourts.com

Going functional
• Early implementation was in Haskell
• Why? Because it did everything I wanted.
• Later realised it’s not Haskell in particular I wanted

• …but its semantics
• Immutability
• Purity
• and some other stuff
• and, well…functions!

• The whole graph thing is an optimisation problem
• The properties of a purely functional language

enables a run time to make a lot of assumptions
• These assumptions open possibilities not otherwise

available (some times by allowing us to pretend a
problem isn’t there)

17

http://zcourts.com

zcourts.com

Distributed Query Model: TQL, Tesseract Query Language

18

• Haskell?
• …before you start sneaking out the back doors
• What would that even look like…?

http://zcourts.com

zcourts.com

Distributed Query Model: TQL, Tesseract Query Language

18

• Haskell?
• …before you start sneaking out the back doors
• What would that even look like…?

http://zcourts.com

zcourts.com

Distributed Query Model: TQL, Tesseract Query Language

• What you’re looking at is TQL

18

• Haskell?
• …before you start sneaking out the back doors
• What would that even look like…?

http://zcourts.com

zcourts.com

Distributed Query Model: TQL, Tesseract Query Language

• What you’re looking at is TQL
• a pure

18

• Haskell?
• …before you start sneaking out the back doors
• What would that even look like…?

http://zcourts.com

zcourts.com

Distributed Query Model: TQL, Tesseract Query Language

• What you’re looking at is TQL
• a pure
• functional language

18

• Haskell?
• …before you start sneaking out the back doors
• What would that even look like…?

http://zcourts.com

zcourts.com

Distributed Query Model: TQL, Tesseract Query Language

• What you’re looking at is TQL
• a pure
• functional language
• it has type inferencing and all the cool functional widgets!

18

• Haskell?
• …before you start sneaking out the back doors
• What would that even look like…?

http://zcourts.com

zcourts.com

Distributed Query Model: TQL pt2

19

http://zcourts.com

zcourts.com

Distributed Query Model: TQL pt2
• How was that functional?

19

http://zcourts.com

zcourts.com

Distributed Query Model: TQL pt2
• How was that functional?
• It employed use of:

• Functions - relation between a set of input and a set of permissible outputs

• Monads - structures that allow you to define computation in terms of the steps
necessary to obtain the results of the computation.

• Monoids - a set with a single associative (1+ 2) + 3 == 1 + (2+3) binary operation an
identity element (an element where, when applied to any other in the set, the value of the
other element remains unchanged. e.g. given * as the binary operation and the set S={1,2,3},
1 is the identity element since 1 * 1 = 1, 2 * 1 = 2 and 3 * 1 = 3)

• Currying - where a function which takes multiple arguments is converted into a
series of functions which take a single argument, the currying technique produces partially
applied functions.

• Higher order functions - functions which takes other functions as its
parameter

• Function composition - the process of making the result of one function the
argument of another

19

http://zcourts.com

zcourts.com

Distributed Query Model: TQL pt2
• How was that functional?
• It employed use of:

• Functions - relation between a set of input and a set of permissible outputs

• Monads - structures that allow you to define computation in terms of the steps
necessary to obtain the results of the computation.

• Monoids - a set with a single associative (1+ 2) + 3 == 1 + (2+3) binary operation an
identity element (an element where, when applied to any other in the set, the value of the
other element remains unchanged. e.g. given * as the binary operation and the set S={1,2,3},
1 is the identity element since 1 * 1 = 1, 2 * 1 = 2 and 3 * 1 = 3)

• Currying - where a function which takes multiple arguments is converted into a
series of functions which take a single argument, the currying technique produces partially
applied functions.

• Higher order functions - functions which takes other functions as its
parameter

• Function composition - the process of making the result of one function the
argument of another

• Don’t believe me? Let’s look at a definition for
“INSERT” shown on the previous slide

19

http://zcourts.com

zcourts.com

Distributed Query Model: TQL pt3

20

http://zcourts.com

zcourts.com

Distributed Query Model: TQL pt3

INSERT :: ((String -> (V…) -> (E…) -> PartialTransform)) -> Transform

20

http://zcourts.com

zcourts.com

Distributed Query Model: TQL pt3

INSERT :: ((String -> (V…) -> (E…) -> PartialTransform)) -> Transform

20

Function
name

http://zcourts.com

zcourts.com

Distributed Query Model: TQL pt3

INSERT :: ((String -> (V…) -> (E…) -> PartialTransform)) -> Transform

20

Function
name

Graph
namespace

http://zcourts.com

zcourts.com

Distributed Query Model: TQL pt3

INSERT :: ((String -> (V…) -> (E…) -> PartialTransform)) -> Transform

20

Function
name

Graph
namespace

Vertex type

http://zcourts.com

zcourts.com

Distributed Query Model: TQL pt3

INSERT :: ((String -> (V…) -> (E…) -> PartialTransform)) -> Transform

20

Function
name

Graph
namespace

Vertex type

Edge type

http://zcourts.com

zcourts.com

Distributed Query Model: TQL pt3

INSERT :: ((String -> (V…) -> (E…) -> PartialTransform)) -> Transform

20

Function
name

Graph
namespace

Vertex type

… = var-arg 
+ Homogeneous

Edge type

http://zcourts.com

zcourts.com

Distributed Query Model: TQL pt3

INSERT :: ((String -> (V…) -> (E…) -> PartialTransform)) -> Transform

20

Function
name

Result of “INSERT”

Graph
namespace

Vertex type

… = var-arg 
+ Homogeneous

Edge type

http://zcourts.com

zcourts.com

Distributed Query Model: TQL pt3

INSERT :: ((String -> (V…) -> (E…) -> PartialTransform)) -> Transform

20

Function
name

Result of “INSERT”

Graph
namespace

Vertex type

… = var-arg 
+ Homogeneous

Edge type

Result of lambda
function

http://zcourts.com

zcourts.com

Distributed Query Model: TQL pt3

INSERT :: ((String -> (V…) -> (E…) -> PartialTransform)) -> Transform

20

Function
name

Result of “INSERT”

Graph
namespace

Vertex type

… = var-arg 
+ Homogeneous

Edge type

Result of lambda
function

• Lambda function you say?

http://zcourts.com

zcourts.com

Distributed Query Model: TQL pt3

INSERT :: ((String -> (V…) -> (E…) -> PartialTransform)) -> Transform

20

Function
name

Result of “INSERT”

Graph
namespace

Vertex type

… = var-arg 
+ Homogeneous

Edge type

Result of lambda
function

• Lambda function you say?
• Where, where?

http://zcourts.com

zcourts.com

Distributed Query Model: TQL pt3

INSERT :: ((String -> (V…) -> (E…) -> PartialTransform)) -> Transform

20

• Lambda function you say?
• Where, where?

http://zcourts.com

zcourts.com

Distributed Query Model: TQL pt3

INSERT :: ((String -> (V…) -> (E…) -> PartialTransform)) -> Transform

20

• Lambda function you say?
• Where, where?

http://zcourts.com

zcourts.com

Distributed Query Model: TQL pt3

INSERT :: ((String -> (V…) -> (E…) -> PartialTransform)) -> Transform

20

http://zcourts.com

zcourts.com

Distributed Query Model: TQL pt3

INSERT :: ((String -> (V…) -> (E…) -> PartialTransform)) -> Transform

20

From
here…

http://zcourts.com

zcourts.com

Distributed Query Model: TQL pt3

INSERT :: ((String -> (V…) -> (E…) -> PartialTransform)) -> Transform

20

From
here… …to here!

http://zcourts.com

zcourts.com

Distributed Query Model: TQL pt3

INSERT :: ((String -> (V…) -> (E…) -> PartialTransform)) -> Transform

20

http://zcourts.com

zcourts.com

Distributed Query Model: TQL pt3

INSERT :: ((String -> (V…) -> (E…) -> PartialTransform)) -> Transform

20

• Types are optional and are inferred using Hindley–Milner style type system

http://zcourts.com

zcourts.com

Distributed Query Model: TQL pt3

INSERT :: ((String -> (V…) -> (E…) -> PartialTransform)) -> Transform

20

• Types are optional and are inferred using Hindley–Milner style type system
• Functions are translated to “enriched” lambda calculus for reduction & evaluation

http://zcourts.com

zcourts.com

Distributed Query Model: TQL pt3

INSERT :: ((String -> (V…) -> (E…) -> PartialTransform)) -> Transform

20

• Types are optional and are inferred using Hindley–Milner style type system
• Functions are translated to “enriched” lambda calculus for reduction & evaluation
• Built on top of LLVM

http://zcourts.com

zcourts.com

Distributed Query Model: TQL pt3

INSERT :: ((String -> (V…) -> (E…) -> PartialTransform)) -> Transform

20

• Types are optional and are inferred using Hindley–Milner style type system
• Functions are translated to “enriched” lambda calculus for reduction & evaluation
• Built on top of LLVM
• TQL comes with a useful “standard” library like most languages

http://zcourts.com

zcourts.com

Distributed Query Model: TQL pt3

INSERT :: ((String -> (V…) -> (E…) -> PartialTransform)) -> Transform

20

• Types are optional and are inferred using Hindley–Milner style type system
• Functions are translated to “enriched” lambda calculus for reduction & evaluation
• Built on top of LLVM
• TQL comes with a useful “standard” library like most languages
• An “Algorithms & machine learning” module will ship as an add-on module

http://zcourts.com

zcourts.com

Distributed Query Model: TQL pt3

INSERT :: ((String -> (V…) -> (E…) -> PartialTransform)) -> Transform

20

• Types are optional and are inferred using Hindley–Milner style type system
• Functions are translated to “enriched” lambda calculus for reduction & evaluation
• Built on top of LLVM
• TQL comes with a useful “standard” library like most languages
• An “Algorithms & machine learning” module will ship as an add-on module
• Ability to define new modules/add or override functions

http://zcourts.com

zcourts.com

Distributed Query Model: TQL pt3

INSERT :: ((String -> (V…) -> (E…) -> PartialTransform)) -> Transform

20

• Types are optional and are inferred using Hindley–Milner style type system
• Functions are translated to “enriched” lambda calculus for reduction & evaluation
• Built on top of LLVM
• TQL comes with a useful “standard” library like most languages
• An “Algorithms & machine learning” module will ship as an add-on module
• Ability to define new modules/add or override functions
• Include additional modules (yours or a third party’s)

http://zcourts.com

zcourts.com21

Distributed Query Model: Runtime
• The model places a lot of additional work server side.
• Previously enumerated properties enable the server to

make a lot of assumptions and by proxy optimisations
• Client interface remains consistent
• While on going research can improve the run time

without major client changes

http://zcourts.com

zcourts.com21

Distributed Query Model: Runtime
• The model places a lot of additional work server side.
• Previously enumerated properties enable the server to

make a lot of assumptions and by proxy optimisations
• Client interface remains consistent
• While on going research can improve the run time

without major client changes

Tesseract runtime

http://zcourts.com

zcourts.com21

Distributed Query Model: Runtime
• The model places a lot of additional work server side.
• Previously enumerated properties enable the server to

make a lot of assumptions and by proxy optimisations
• Client interface remains consistent
• While on going research can improve the run time

without major client changes

Tesseract runtime

TQL

http://zcourts.com

zcourts.com21

Distributed Query Model: Runtime
• The model places a lot of additional work server side.
• Previously enumerated properties enable the server to

make a lot of assumptions and by proxy optimisations
• Client interface remains consistent
• While on going research can improve the run time

without major client changes

Tesseract runtime

TQL

CRDTs

http://zcourts.com

zcourts.com21

Distributed Query Model: Runtime
• The model places a lot of additional work server side.
• Previously enumerated properties enable the server to

make a lot of assumptions and by proxy optimisations
• Client interface remains consistent
• While on going research can improve the run time

without major client changes

Tesseract runtime

TQL

CRDTs Cascading
vertices

http://zcourts.com

zcourts.com21

Distributed Query Model: Runtime
• The model places a lot of additional work server side.
• Previously enumerated properties enable the server to

make a lot of assumptions and by proxy optimisations
• Client interface remains consistent
• While on going research can improve the run time

without major client changes

Tesseract runtime

TQL

CRDTs Cascading
vertices

Wormhole traversals

http://zcourts.com

zcourts.com21

Distributed Query Model: Runtime
• The model places a lot of additional work server side.
• Previously enumerated properties enable the server to

make a lot of assumptions and by proxy optimisations
• Client interface remains consistent
• While on going research can improve the run time

without major client changes

Tesseract runtime

TQL

CRDTs Cascading
vertices

Wormhole traversals Optimisations (Memoization/
Amortisation/etc)

http://zcourts.com

zcourts.com

Compaction & Garbage collection

22

http://zcourts.com

zcourts.com

Compaction & Garbage collection
• Immutability means we store data that’s no longer needed i.e. garbage

22

http://zcourts.com

zcourts.com

Compaction & Garbage collection
• Immutability means we store data that’s no longer needed i.e. garbage
• CRDTs can accumulate a large amount of garbage

• This can be avoided by not keeping tombstones at all
• Without tombstones the system is unable to do a consistent

snapshot
• If snapshots are disabled, tombstones are not needed
• Short synchronisation are used out of the query path to do some

clean up (currently evaluating RAFT for GC consensus)

22

http://zcourts.com

zcourts.com

Compaction & Garbage collection
• Immutability means we store data that’s no longer needed i.e. garbage
• CRDTs can accumulate a large amount of garbage

• This can be avoided by not keeping tombstones at all
• Without tombstones the system is unable to do a consistent

snapshot
• If snapshots are disabled, tombstones are not needed
• Short synchronisation are used out of the query path to do some

clean up (currently evaluating RAFT for GC consensus)
• Current work is modelled off of JVM’s generational collectors

22

http://zcourts.com

zcourts.com

Compaction & Garbage collection
• Immutability means we store data that’s no longer needed i.e. garbage
• CRDTs can accumulate a large amount of garbage

• This can be avoided by not keeping tombstones at all
• Without tombstones the system is unable to do a consistent

snapshot
• If snapshots are disabled, tombstones are not needed
• Short synchronisation are used out of the query path to do some

clean up (currently evaluating RAFT for GC consensus)
• Current work is modelled off of JVM’s generational collectors
• Algorithm needs more investigation…

22

http://zcourts.com

zcourts.com

Compaction & Garbage collection
• Immutability means we store data that’s no longer needed i.e. garbage
• CRDTs can accumulate a large amount of garbage

• This can be avoided by not keeping tombstones at all
• Without tombstones the system is unable to do a consistent

snapshot
• If snapshots are disabled, tombstones are not needed
• Short synchronisation are used out of the query path to do some

clean up (currently evaluating RAFT for GC consensus)
• Current work is modelled off of JVM’s generational collectors
• Algorithm needs more investigation…
• Compaction also serves as an opportunity to optimise data location

• Write only means vertex properties and edges aren’t always next to
each other in a data file

• During compaction we re-arrange contents
• Helps reduce the amount of work required by spindle disks to fetch

a vertex’s data
22

http://zcourts.com

zcourts.com

First release due in 2-3 months

Will be Apache v2 Licensed

github.com/zcourts/Tesseract

23

http://zcourts.com
http://github.com/zcourts/Tesseract

zcourts.com24

End…

Questions?

Courtney Robinson
Google “zcourts” 

courtney@zcourts.com
github.com/zcourts/Tesseract

http://zcourts.com
mailto:courtney@zcourts.com
http://github.com/zcourts/Tesseract

