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• I can be found around the web as “zcourts”, Google it… 
• The web is one very prominent example of a graph 
• Too big for a single machine  
• So we must split or “partition” it over multiple 
• Partitioning is hard…in fact, it has been shown to be np-

complete 
• All we can do is edge closer to more “optimal” solutions 
• The Tesseract is an ongoing research project  
• Its focus is on distributed graph partitioning 
• The rest of this presentation is a series of solutions, which 

together, takes one step closer to faster distributed graph 
processing
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Graph -  A graph G is made up of a set of vertices and edges,  
G = (V,E) 

 
 

Vertex - Smallest unit of user accessible datum 

Edge - Connects two vertices, may have a direction  

Property - Key value pair available on an Edge or Vertex  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Aims of the Tesseract

1. Implement distributed eventually consistent graph 
database 

2. Develop a distributed graph partitioning algorithm  

3. Develop a computational model able to support both 
real time and batch processing on a distributed 
graph
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CRDTs again…because they’re important

• One very important property of a CRDT is: 

{a,b,c,d}  :⇔ {a,b} ∪ {c,d} 

• Those two sets being logically equivalent is a 

desirable property 

• Enables partitioning (with rendezvous hashing for e.g.)
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Naïve “cascading vertices”
• Naïve graph partitioning 
• Depends on the query model to make up for its Naïvety 
• Uses hashing to place data 
• Two cascading algorithms formulated from:  

V = the vertex to cascade  
n = max nodes to cascade across  
ń = auto-determined value of n, using logistics growth model  
d = deg(v) = Degree of V  
e = ⟨∀deg(v) ∈ G⟩ i.e. average degree of all vertices in the graph  
|nV| = Max number of edges per node for a vertex  

  i.e. cascading point (min number of edges before cascading occurs) 

1. |nV| = d / n - user provides n, split evenly across nodes 
2. |nV| = max(d,e) / n - user provides n, split evenly based on d or e 

if e is bigger
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“Cascading vertices” by example
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• Let’s use Twitter followers as an example 
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• Let’s use Twitter followers as an example 
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Aims of the Tesseract

1. Implement distributed eventually consistent graph 
database 

2. Develop a distributed graph partitioning algorithm  

3. Develop a computational model able to 
support both real time and batch 
processing on a distributed graph

12
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Distributed computation
Localised calculations 

Amortisation 

Memoization
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Amortisation
• Optimise to perform more “cheap” computations 
• This allows us to occasionally pay the cost of more “expensive” 

operations such that they computationally balance out 
• e.g. Checking data locally on a node vs querying over a 

network
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Memoization
• Cache the results of computations 

• A luxury afforded by immutability 
• Sacrifices disk space and memory 
• Provides improved query performance
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1st 
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Traverse 
n secs

Cache 
results

2nd 
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Cache 
n/r
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Wormhole traversals
• Immutability offers guarantees 
• Place markers at every n vertex intervals 
• When traversing, don’t visit every vertex, jump to markers 

instead.

16

A B C

D

E
F

G

• Markers at A, G, F, D 
• By pass B,C,E during traversal, almost halving the time. 
• The resulting data has any skipped vertex asynchronously 

fetched
• A key part of this is in the use of 

“Path summaries” 
• Path summary is an optimisation 

that enables the runtime to skip 
network requests  

• Allows traversal to continue 
locally and async request is 
made to gather the remote 
results

follows

follows follows

knows

knows

friends
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Going functional
• Early implementation was in Haskell
• Why? Because it did everything I wanted.
• Later realised it’s not Haskell in particular I wanted 

• …but its semantics 
• Immutability 
• Purity 
• and some other stuff 
• and, well…functions!

• The whole graph thing is an optimisation problem 
• The properties of a purely functional language 

enables a run time to make a lot of assumptions 
• These assumptions open possibilities not otherwise 

available (some times by allowing us to pretend a 
problem isn’t there)

17
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Distributed Query Model: TQL, Tesseract Query Language

18

• Haskell? 
• …before you start sneaking out the back doors 
• What would that even look like…?
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Distributed Query Model: TQL, Tesseract Query Language

• What you’re looking at is TQL
• a pure
• functional language
• it has type inferencing and all the cool functional widgets!

18

• Haskell? 
• …before you start sneaking out the back doors 
• What would that even look like…?
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Distributed Query Model: TQL pt2
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Distributed Query Model: TQL pt2
• How was that functional?
• It employed use of: 

• Functions - relation between a set of input and a set of permissible outputs 

• Monads - structures that allow you to define computation in terms of the steps 
necessary to obtain the results of the computation. 

• Monoids - a set with a single associative (1+ 2) + 3 == 1 + (2+3) binary operation an 
identity element (an element where, when applied to any other in the set, the value of the 
other element remains unchanged. e.g. given * as the binary operation and the set S={1,2,3}, 
1 is the identity element since 1 * 1 = 1, 2 * 1 = 2 and 3 * 1 = 3) 

• Currying - where a function which takes multiple arguments is converted into a 
series of functions which take a single argument, the currying technique produces partially 
applied functions. 

• Higher order functions - functions which takes other functions as its 
parameter 

• Function composition - the process of making the result of one function the 
argument of another

19

http://zcourts.com


zcourts.com

Distributed Query Model: TQL pt2
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• It employed use of: 

• Functions - relation between a set of input and a set of permissible outputs 

• Monads - structures that allow you to define computation in terms of the steps 
necessary to obtain the results of the computation. 

• Monoids - a set with a single associative (1+ 2) + 3 == 1 + (2+3) binary operation an 
identity element (an element where, when applied to any other in the set, the value of the 
other element remains unchanged. e.g. given * as the binary operation and the set S={1,2,3}, 
1 is the identity element since 1 * 1 = 1, 2 * 1 = 2 and 3 * 1 = 3) 

• Currying - where a function which takes multiple arguments is converted into a 
series of functions which take a single argument, the currying technique produces partially 
applied functions. 

• Higher order functions - functions which takes other functions as its 
parameter 

• Function composition - the process of making the result of one function the 
argument of another

• Don’t believe me? Let’s look at a definition for 
“INSERT” shown on the previous slide

19
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Distributed Query Model: TQL pt3
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Distributed Query Model: TQL pt3

INSERT :: ( (String -> (V…) -> (E…) -> PartialTransform) ) -> Transform

20

• Types are optional and are inferred using Hindley–Milner style type system
• Functions are translated to “enriched” lambda calculus for reduction & evaluation
• Built on top of LLVM
• TQL comes with a useful “standard” library like most languages
• An “Algorithms & machine learning” module will ship as an add-on module
• Ability to define new modules/add or override functions
• Include additional modules (yours or a third party’s)
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Distributed Query Model: Runtime
• The model places a lot of additional work server side. 
• Previously enumerated properties enable the server to 

make a lot of assumptions and by proxy optimisations 
• Client interface remains consistent 
• While on going research can improve the run time 

without major client changes
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Distributed Query Model: Runtime
• The model places a lot of additional work server side. 
• Previously enumerated properties enable the server to 

make a lot of assumptions and by proxy optimisations 
• Client interface remains consistent 
• While on going research can improve the run time 

without major client changes

Tesseract runtime

TQL

CRDTs Cascading 
vertices

Wormhole traversals Optimisations (Memoization/
Amortisation/etc)
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Compaction & Garbage collection
• Immutability means we store data that’s no longer needed i.e. garbage
• CRDTs can accumulate a large amount of garbage 

• This can be avoided by not keeping tombstones at all 
• Without tombstones the system is unable to do a consistent 

snapshot 
• If snapshots are disabled, tombstones are not needed 
• Short synchronisation are used out of the query path to do some 

clean up (currently evaluating RAFT for GC consensus)
• Current work is modelled off of JVM’s generational collectors
• Algorithm needs more investigation…
• Compaction also serves as an opportunity to optimise data location 

• Write only means vertex properties and edges aren’t always next to 
each other in a data file 

• During compaction we re-arrange contents 
• Helps reduce the amount of work required by spindle disks to fetch 

a vertex’s data
22
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First release due in 2-3 months 

Will be Apache v2 Licensed 

github.com/zcourts/Tesseract

23
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End… 

Questions? 

Courtney Robinson 
Google “zcourts” 

courtney@zcourts.com 
github.com/zcourts/Tesseract
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http://github.com/zcourts/Tesseract

