
Stefan Hajnoczi | FOSDEM 20151

Observability in KVM

Stefan Hajnoczi <stefanha@redhat.com>
FOSDEM 2015

How to troubleshoot virtual machines

mailto:stefanha@redhat.com

Stefan Hajnoczi | FOSDEM 20152

In this talk we can only
scratch the surface

(sorry)

Stefan Hajnoczi | FOSDEM 20153

About me

QEMU contributor since 2010

● Block layer co-maintainer

● Tracing and net subsystem maintainer

● Google Summer of Code & Outreach Program for
Women mentor and administrator

I work in Red Hat's KVM virtualization team

Stefan Hajnoczi | FOSDEM 20155

Common questions on #qemu IRC

“My VM cannot connect to the internet. What's
wrong?”

“Copying files is slow in the VM. How can I make it
fast?”

These problems can be solved through
troubleshooting, but QEMU is a black box to many
users.

This talk is about how to get to the bottom of these
types of issues.

Stefan Hajnoczi | FOSDEM 20156

What's required for troubleshooting?

Systematic approaches require a mental model

Knowing components and their relationships allows
you to ask the right questions.

?

Stefan Hajnoczi | FOSDEM 20157

How to troubleshoot KVM issues

Get familiar with the components and key
characteristics of KVM

Make use of observability tools:

● Performance statistics

● Network packet capture

● Log files

● Tracing

Use scientific process to determine root cause

Stefan Hajnoczi | FOSDEM 20158

Components in the KVM virtualization stack

OpenStack

libvirt

oVirt

kvm.koHost kernel

Management for
datacenters and clouds

Management for
one host

GuestQEMU
Emulation for
one guest

Host hardware access
and resource mgmt

Stefan Hajnoczi | FOSDEM 20159

General troubleshooting with libvirt and KVM

Use virsh(1) to inspect virtual machines

● Far too many commands to list, see “virsh help”

Libvirt keeps logs for each virtual machine at
/var/log/libvirt/qemu/<domain>.log

Also check dmesg(1) for kernel messages such as
Out-of-Memory killer, segmentation faults, or error
messages from kvm.ko module

Stefan Hajnoczi | FOSDEM 201510

Tracing

Tracing is useful for performance analysis, requires
low-level knowledge and/or familiarity with code

Using strace -f on QEMU is noisy but can be done

kvm.ko kernel trace events available via perf(1) and
trace-cmd(1)

Some distros ship QEMU with a SystemTap tapset

● Advantage: combine host kernel and QEMU traces

Stefan Hajnoczi | FOSDEM 201511

The big secret to troubleshooting KVM

Plain old Linux commands like ps(1), vmstat(1),
tcpdump(8), etc work!

There is less virtualization magic than one
might think.

Stefan Hajnoczi | FOSDEM 201512

Part 1 - CPU

Stefan Hajnoczi | FOSDEM 201513

Virtual machine CPU execution (overview)

1 QEMU process per
guest

1 “vcpu thread” per guest
CPU

Host kernel schedules
vcpu threads like normal
threads

Host kernel

1 2 3 4

QEMU

Stefan Hajnoczi | FOSDEM 201514

CPU utilization breakdown on KVM hosts

Useful CPU utilization categories:

1)Guest code (%guest)
● Kernel and userspace

2)QEMU (%usr)
● Device emulation, live migration, etc

3)Other host userspace (%usr)
● Are you running bitcoind on the host?!

4)Host kernel (%sys, %irq, %soft)
● Caused by I/O or userspace activity

Stefan Hajnoczi | FOSDEM 201515

Host shows high CPU utilization, what's wrong?

%usr %nice %sys %iowait %irq

0.40 0.00 0.40 0.30 0.00

%soft %steal %guest %gnice %idle

0.00 0.00 25.01 0.00 73.89

top(1) on host shows 25% user process CPU time

Tool: mpstat(1) from the “sysstat” package offers detailed
processor statistics

25.01% guest means 1 out of 4 host CPUs is maxed out
running guest code.

Result: Check if guest is stuck in an infinite loop or use
<cputune> libvirt XML for cgroups resource control

Stefan Hajnoczi | FOSDEM 201516

Is my cloud guest getting enough CPU?

Host may report how long runnable vcpus wait to run
on a physical CPU

Reported as %steal in mpstat(1)

Requires host to cooperate – may be disabled

Good for identifying overloaded hosts

Stefan Hajnoczi | FOSDEM 201517

Virtual machine CPU execution (low-level)

vcpu thread calls
ioctl(KVM_RUN)
repeatedly to run guest
code

Kicked out of guest code
by hardware register
accesses, interrupts,
model specific registers,
etc

Run

PIO EIO MSR...

vcpu thread state machine

Stefan Hajnoczi | FOSDEM 201518

Observing low-level events with kvm_stat

kvm_stat is a top(1)-like tool for KVM event counters:

kvm_exit 809319 432
kvm_entry 809319 432
kvm_msr 593133 318
kvm_inj_virq 196268 112
kvm_eoi 196165 112
…

These KVM trace events can also be observed with
perf record -a -e kvm:*

Stefan Hajnoczi | FOSDEM 201519

100% CPU while sitting at the GRUB menu?

Suspicious events are typically >10,000 events/sec:

kvm_exit … 880112

kvm_cr … 805440

“cr” ← x86 control registers (e.g. changing into
protected mode)

This could be a guest is spinning in a loop that
transitions back and forth between real mode and
protected mode.

Stefan Hajnoczi | FOSDEM 201520

Part 2 - Networking

Stefan Hajnoczi | FOSDEM 201521

Virtual machine networking

virtio_net

vhost_net

tun

eth0
bridge

Physical network

Guest
kernel

Host kernel

vhost_net with bridged networking is a
popular configuration

Guest interface: eth0 emulated virtio-net NIC
Host interface: vnet0 tun software interface

External network
connectivity through
software bridge (virbr0)

Other guests can be
connected to same
bridge for guest<->guest
connectivity

Stefan Hajnoczi | FOSDEM 201522

Troubleshooting bridged networking

tcpdump eth0 inside guest

● Does guest receive traffic and get ARP responses?

tcpdump vnet0 on host

● Does host see guest outgoing traffic?

● Does the bridge forward guest incoming traffic?

tcpdump virbr0 on host

● Does the bridge see traffic?

tcpdump eth0 on host

● Does physical traffic look as expected?

Stefan Hajnoczi | FOSDEM 201523

Host-wide interface statistics

netstat -i
Iface MTU RX-OK … TX-OK …
virbr0 1500 2669 4611
virbr0-n 1500 0 0
vnet0 1500 41 502
wlp3s0 1500 1500554 387876

Guest network interface names can be queried:

virsh domiflist rhel7
Interface Type Source Model MAC
vnet0 network default virtio 52:...

Stefan Hajnoczi | FOSDEM 201524

Popular NAT networking configuration

virtio_net

vhost_net

tun

eth0
bridge

Guest
kernel

Host kernel

NAT (netfilter)

Guests on private bridge with iptables NAT
rules for external connectivity
● Private guest IP range
● Only one public IP for host and guests
● Requires port-forwarding for incoming
connections

DNS and DHCP services
typically provided by host
using dnsmasq

Stefan Hajnoczi | FOSDEM 201525

Now you can troubleshoot DHCP and DNS too

(host)# journalctl -r | head # or syslog

dnsmasq-dhcp[1173]: DHCPDISCOVER(virbr0)
192.168.122.252 52:54:00:52:fe:24

dnsmasq-dhcp[1173]: DHCPOFFER(virbr0)
192.168.122.252 52:54:00:52:fe:24

dnsmasq-dhcp[1173]: DHCPREQUEST(virbr0)
192.168.122.252 52:54:00:52:fe:24

dnsmasq-dhcp[1173]: DHCPACK(virbr0)
192.168.122.252 52:54:00:52:fe:24

Stefan Hajnoczi | FOSDEM 201526

Part 3 – Disk I/O

Stefan Hajnoczi | FOSDEM 201527

Popular LVM local disk configuration

Storage provided to guest
as virtio-blk PCI adapter

QEMU typically
configured with
cache=none to bypass
host page cache

LVM offers good
performance and storage
management features

lv_guest01

QEMU

virtio_blk

Linux AIO

Guest kernel

Host
kernel

Stefan Hajnoczi | FOSDEM 201528

Why can't QEMU open the disk image file?

Libvirt can launch QEMU as an unprivileged user with
SELinux isolation

Check that QEMU process uid/gid can access disk
image file

Check SELinux audit logs in /var/log/audit/audit.log for
denials

Libvirt SELinux configuration in /etc/libvirt/qemu.conf

Stefan Hajnoczi | FOSDEM 201529

Benchmarking disk performance

Apples-to-oranges
comparisons are very common!

Use fio –direct=1 for
benchmarking to bypass page
cache

Use fio –rw=randwrite for a
random pattern that avoids
QEMU virtio-blk write merging

Application

Guest kernel
(page cache, fs,
device-mapper,

block layer)

QEMU

Host kernel
(page cache, fs,
device-mapper,

block layer)

Physical disk

Stefan Hajnoczi | FOSDEM 201530

I/O statistics with iostat(1)

$ iostat -k -x 1
Device: … r/s w/s rkB/s wkB/s
sda 0.00 13.00 0.00 51.20
 avgrq-sz avgqu-sz …
 7.88 0.01

Compare guest and host to identify unexpected
changes including:

● Page cache usage (request not sent to device)

● Request merging

● Request parallelism (queue depth)

Stefan Hajnoczi | FOSDEM 201531

I/O patterns with blktrace(8)

To study the exact pattern of I/O requests:

8,0 3 1 0.000000000 21846 A W …
8,0 3 2 0.000000770 21846 Q W …
8,0 3 3 0.000004564 21846 G W …
8,0 3 4 0.000006611 21846 I W …
8,0 3 5 0.000017716 21846 D W …
8,0 0 1 0.001158278 0 C W …

This truncated example shows a write request on
device 8,0 taking 1.16 milliseconds.

Stefan Hajnoczi | FOSDEM 201532

Questions?

Email: stefanha@redhat.com

IRC: stefanha on #qemu irc.oftc.net

Blog: http://blog.vmsplice.net/

QEMU: http://qemu-project.org/

Slides available on my website: http://vmsplice.net/

	Slide 1
	Slide 2
	Slide 3
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32

