
Reinventing the Enlightenment Object System

Tom Hacohen
Samsung Electronics Open Source Group

tom.hacohen@samsung.com

@TomHacohen

FOSDEM 2015

mailto:Tom%20Hacohen%20<tom.hacohen@samsung.com>
https://www.twitter.com/TomHacohen


Main Goals

Unify Code

I Many different object systems → one

I Many different event/callback implementations → one

I Make objects compatible



Main Goals

Unify Code

I Many different object systems → one

I Many different event/callback implementations → one

I Make objects compatible



Main Goals

Unify Code

I Many different object systems → one

I Many different event/callback implementations → one

I Make objects compatible



Main Goals

Unify Code

I Many different object systems → one

I Many different event/callback implementations → one

I Make objects compatible



Main Goals

Reducing our API

We have:

evas_object_image_file_set(obj , "blah.png", "key");

edje_object_file_set(obj , "blah.edj", "group");

evas_object_del(obj);

ecore_timer_del(obj);

ecore_animator_del(obj);



Main Goals

Reducing our API

We have:

evas_object_image_file_set(obj , "blah.png", "key");

edje_object_file_set(obj , "blah.edj", "group");

evas_object_del(obj);

ecore_timer_del(obj);

ecore_animator_del(obj);



Main Goals

Bindings Generation

I Be able to automatically generate for most popular languages

I Correctly handle ref counting, buffer ownership and etc.



Main Goals

Bindings Generation

I Be able to automatically generate for most popular languages

I Correctly handle ref counting, buffer ownership and etc.



Main Goals

Bindings Generation

I Be able to automatically generate for most popular languages

I Correctly handle ref counting, buffer ownership and etc.



Main Goals

Not Hurt Performance

I Not easily measurable – many changes in EFL



Main Goals

Not Hurt Performance

I Not easily measurable – many changes in EFL



Other Object Systems

Other Languages

I C++ – our developers hate it
I Objective C – quite ugly and not really common in OSS world

I We considered using just the runtime



Other Object Systems

Other Languages

I C++ – our developers hate it

I Objective C – quite ugly and not really common in OSS world

I We considered using just the runtime



Other Object Systems

Other Languages

I C++ – our developers hate it
I Objective C – quite ugly and not really common in OSS world

I We considered using just the runtime



Other Object Systems

Other Languages

I C++ – our developers hate it
I Objective C – quite ugly and not really common in OSS world

I We considered using just the runtime



Other Object Systems

GObject

Good:

I Fast

I Has a “C feel”

Bad:

I Doesn’t offer a stable ABI

I Funny, full of casting syntax

I “G tech” dependencies

I Didn’t exactly fit our needs



Other Object Systems

GObject

Good:

I Fast

I Has a “C feel”

Bad:

I Doesn’t offer a stable ABI

I Funny, full of casting syntax

I “G tech” dependencies

I Didn’t exactly fit our needs



Other Object Systems

GObject

Good:

I Fast

I Has a “C feel”

Bad:

I Doesn’t offer a stable ABI

I Funny, full of casting syntax

I “G tech” dependencies

I Didn’t exactly fit our needs



Other Object Systems

GObject

Good:

I Fast

I Has a “C feel”

Bad:

I Doesn’t offer a stable ABI

I Funny, full of casting syntax

I “G tech” dependencies

I Didn’t exactly fit our needs



Other Object Systems

GObject

Good:

I Fast

I Has a “C feel”

Bad:

I Doesn’t offer a stable ABI

I Funny, full of casting syntax

I “G tech” dependencies

I Didn’t exactly fit our needs



Other Object Systems

GObject

Good:

I Fast

I Has a “C feel”

Bad:

I Doesn’t offer a stable ABI

I Funny, full of casting syntax

I “G tech” dependencies

I Didn’t exactly fit our needs



Other Object Systems

GObject

Good:

I Fast

I Has a “C feel”

Bad:

I Doesn’t offer a stable ABI

I Funny, full of casting syntax

I “G tech” dependencies

I Didn’t exactly fit our needs



Other Object Systems

GObject

Good:

I Fast

I Has a “C feel”

Bad:

I Doesn’t offer a stable ABI

I Funny, full of casting syntax

I “G tech” dependencies

I Didn’t exactly fit our needs



Other Object Systems

systemd-objectd

Good:

I Exposes a dbus API

I Clean isolated daemon

Bad:

I Linux only



Other Object Systems

systemd-objectd

Good:

I Exposes a dbus API

I Clean isolated daemon

Bad:

I Linux only



Other Object Systems

systemd-objectd

Good:

I Exposes a dbus API

I Clean isolated daemon

Bad:

I Linux only



Other Object Systems

systemd-objectd

Good:

I Exposes a dbus API

I Clean isolated daemon

Bad:

I Linux only



Other Object Systems

systemd-objectd

Good:

I Exposes a dbus API

I Clean isolated daemon

Bad:

I Linux only



What is Eo?

Basics

I It’s Enlightenment’s (fairly) new object system

I Supports classes, abstract classes, mixins and interfaces

I Completely written in C (no external preprocessor)

I API/ABI stable

I Portable



What is Eo?

Basics

I It’s Enlightenment’s (fairly) new object system

I Supports classes, abstract classes, mixins and interfaces

I Completely written in C (no external preprocessor)

I API/ABI stable

I Portable



What is Eo?

Basics

I It’s Enlightenment’s (fairly) new object system

I Supports classes, abstract classes, mixins and interfaces

I Completely written in C (no external preprocessor)

I API/ABI stable

I Portable



What is Eo?

Basics

I It’s Enlightenment’s (fairly) new object system

I Supports classes, abstract classes, mixins and interfaces

I Completely written in C (no external preprocessor)

I API/ABI stable

I Portable



What is Eo?

Basics

I It’s Enlightenment’s (fairly) new object system

I Supports classes, abstract classes, mixins and interfaces

I Completely written in C (no external preprocessor)

I API/ABI stable

I Portable



What is Eo?

Basics

I It’s Enlightenment’s (fairly) new object system

I Supports classes, abstract classes, mixins and interfaces

I Completely written in C (no external preprocessor)

I API/ABI stable

I Portable



What is Eo?

Using Eo

I eo_do(obj, efl_file_set("file.eet", "key"));
I if (eo_do(obj, elm_widget_enabled_get()))
I eo_do(obj, visible = elm_widget_visibility_get(), ←↩

elm_widget_visibility_set(!visible));
I eo_do(obj, elm_widget_visibility_set(!elm_widget_visibility_get()));

I static void size_multiply(double f)

{

int w, h;

evas_object_geometry_get(NULL , NULL , &w, &h);

evas_object_geometry_set(NULL , NULL , w * f, h * f);

}

eo_do(obj , size_multiply (3.5));



What is Eo?

Using Eo

I eo_do(obj, efl_file_set("file.eet", "key"));

I if (eo_do(obj, elm_widget_enabled_get()))
I eo_do(obj, visible = elm_widget_visibility_get(), ←↩

elm_widget_visibility_set(!visible));
I eo_do(obj, elm_widget_visibility_set(!elm_widget_visibility_get()));

I static void size_multiply(double f)

{

int w, h;

evas_object_geometry_get(NULL , NULL , &w, &h);

evas_object_geometry_set(NULL , NULL , w * f, h * f);

}

eo_do(obj , size_multiply (3.5));



What is Eo?

Using Eo

I eo_do(obj, efl_file_set("file.eet", "key"));
I if (eo_do(obj, elm_widget_enabled_get()))

I eo_do(obj, visible = elm_widget_visibility_get(), ←↩
elm_widget_visibility_set(!visible));

I eo_do(obj, elm_widget_visibility_set(!elm_widget_visibility_get()));

I static void size_multiply(double f)

{

int w, h;

evas_object_geometry_get(NULL , NULL , &w, &h);

evas_object_geometry_set(NULL , NULL , w * f, h * f);

}

eo_do(obj , size_multiply (3.5));



What is Eo?

Using Eo

I eo_do(obj, efl_file_set("file.eet", "key"));
I if (eo_do(obj, elm_widget_enabled_get()))
I eo_do(obj, visible = elm_widget_visibility_get(), ←↩

elm_widget_visibility_set(!visible));

I eo_do(obj, elm_widget_visibility_set(!elm_widget_visibility_get()));

I static void size_multiply(double f)

{

int w, h;

evas_object_geometry_get(NULL , NULL , &w, &h);

evas_object_geometry_set(NULL , NULL , w * f, h * f);

}

eo_do(obj , size_multiply (3.5));



What is Eo?

Using Eo

I eo_do(obj, efl_file_set("file.eet", "key"));
I if (eo_do(obj, elm_widget_enabled_get()))
I eo_do(obj, visible = elm_widget_visibility_get(), ←↩

elm_widget_visibility_set(!visible));
I eo_do(obj, elm_widget_visibility_set(!elm_widget_visibility_get()));

I static void size_multiply(double f)

{

int w, h;

evas_object_geometry_get(NULL , NULL , &w, &h);

evas_object_geometry_set(NULL , NULL , w * f, h * f);

}

eo_do(obj , size_multiply (3.5));



What is Eo?

Using Eo

I eo_do(obj, efl_file_set("file.eet", "key"));
I if (eo_do(obj, elm_widget_enabled_get()))
I eo_do(obj, visible = elm_widget_visibility_get(), ←↩

elm_widget_visibility_set(!visible));
I eo_do(obj, elm_widget_visibility_set(!elm_widget_visibility_get()));

I static void size_multiply(double f)

{

int w, h;

evas_object_geometry_get(NULL , NULL , &w, &h);

evas_object_geometry_set(NULL , NULL , w * f, h * f);

}

eo_do(obj , size_multiply (3.5));



What is Eo? | Internals

eo_do() – How It’s Done (simplified)

#define eo_do(eoid , clsid , ...) \

({ \

const Eo *_eoid_ EO_DO_CLEANUP = eoid; \

_eo_do_start(_eoid_ , clsid); \

__VA_ARGS__; \

})



What is Eo? | Internals

eo_do() – How It’s Done (simplified)

#define eo_do(eoid , clsid , ...) \

({ \

const Eo *_eoid_ EO_DO_CLEANUP = eoid; \

_eo_do_start(_eoid_ , clsid); \

__VA_ARGS__; \

})



What is Eo? | Internals

Defining New Functions (simplified)

EOAPI EO_FUNC_BODY(eo_parent_get, Eo *, NULL);

#define EO_FUNC_BODY(Name , Ret , DefRet) \

Ret Name(void) \

{ \

static Eo_Op op = EO_NOOP; \

if (op == EO_NOOP) \

op = _eo_api_op_id_get ((void*) Name); \

if (! _eo_call_resolve (#Name , op , &call)) \

return DefRet; \

_Eo_##Name##_func _func_ = \

(_Eo_##Name##_func) call.func; \

return _func_(call.obj , call.data); \

}



What is Eo? | Internals

Defining New Functions (simplified)

EOAPI EO_FUNC_BODY(eo_parent_get, Eo *, NULL);

#define EO_FUNC_BODY(Name , Ret , DefRet) \

Ret Name(void) \

{ \

static Eo_Op op = EO_NOOP; \

if (op == EO_NOOP) \

op = _eo_api_op_id_get ((void*) Name); \

if (! _eo_call_resolve (#Name , op , &call)) \

return DefRet; \

_Eo_##Name##_func _func_ = \

(_Eo_##Name##_func) call.func; \

return _func_(call.obj , call.data); \

}



What is Eo? | Internals

Defining New Functions (simplified)

EOAPI EO_FUNC_BODY(eo_parent_get, Eo *, NULL);

#define EO_FUNC_BODY(Name , Ret , DefRet) \

Ret Name(void) \

{ \

static Eo_Op op = EO_NOOP; \

if (op == EO_NOOP) \

op = _eo_api_op_id_get ((void*) Name); \

if (! _eo_call_resolve (#Name , op , &call)) \

return DefRet; \

_Eo_##Name##_func _func_ = \

(_Eo_##Name##_func) call.func; \

return _func_(call.obj , call.data); \

}



What is Eo? | Internals

Defining New Classes (simplified)

Populating a struct with some metadata

static Eo_Op_Description _edje_object_op_desc [] = {

EO_OP_FUNC(edje_obj_update_hints_set , ←↩
_edje_object_update_hints_set),

EO_OP_FUNC_OVERRIDE(eo_constructor , ←↩
_edje_object_eo_base_constructor),

EO_OP_CLASS_FUNC(eo_event_global_thaw , ←↩
_eo_base_event_global_thaw),

EO_OP_CLASS_OVERRIDE_FUNC(eo_event_global_thaw , ←↩
_edje_object_eo_base_event_global_thaw)

};



What is Eo? | Internals

Defining New Classes (simplified)

Populating a struct with some metadata

static Eo_Op_Description _edje_object_op_desc [] = {

EO_OP_FUNC(edje_obj_update_hints_set , ←↩
_edje_object_update_hints_set),

EO_OP_FUNC_OVERRIDE(eo_constructor , ←↩
_edje_object_eo_base_constructor),

EO_OP_CLASS_FUNC(eo_event_global_thaw , ←↩
_eo_base_event_global_thaw),

EO_OP_CLASS_OVERRIDE_FUNC(eo_event_global_thaw , ←↩
_edje_object_eo_base_event_global_thaw)

};



What is Eo? | Internals

Event Identifiers

EOAPI const Eo_Event_Description ←↩
_EO_BASE_EVENT_CALLBACK_ADD = ←↩
EO_EVENT_DESCRIPTION("callback ,add");



What is Eo? | Internals

Event Identifiers

EOAPI const Eo_Event_Description ←↩
_EO_BASE_EVENT_CALLBACK_ADD = ←↩
EO_EVENT_DESCRIPTION("callback ,add");



What is Eo? |

Unique Features

I Pointer indirection (at least in C)

I Multiple calls in one context

I How we do constructors (setting properties, no constructors)

I Named ref-counting

I Composite objects

I Default return values



What is Eo? |

Unique Features

I Pointer indirection (at least in C)

I Multiple calls in one context

I How we do constructors (setting properties, no constructors)

I Named ref-counting

I Composite objects

I Default return values



What is Eo? |

Unique Features

I Pointer indirection (at least in C)

I Multiple calls in one context

I How we do constructors (setting properties, no constructors)

I Named ref-counting

I Composite objects

I Default return values



What is Eo? |

Unique Features

I Pointer indirection (at least in C)

I Multiple calls in one context

I How we do constructors (setting properties, no constructors)

I Named ref-counting

I Composite objects

I Default return values



What is Eo? |

Unique Features

I Pointer indirection (at least in C)

I Multiple calls in one context

I How we do constructors (setting properties, no constructors)

I Named ref-counting

I Composite objects

I Default return values



What is Eo? |

Unique Features

I Pointer indirection (at least in C)

I Multiple calls in one context

I How we do constructors (setting properties, no constructors)

I Named ref-counting

I Composite objects

I Default return values



What is Eo? |

Unique Features

I Pointer indirection (at least in C)

I Multiple calls in one context

I How we do constructors (setting properties, no constructors)

I Named ref-counting

I Composite objects

I Default return values



Reception |

Wash, Rinse, Repeat

I Eo1

I Eo2

I Eolian

I Eolian (improved)



Reception |

Wash, Rinse, Repeat

I Eo1

I Eo2

I Eolian

I Eolian (improved)



Reception |

Wash, Rinse, Repeat

I Eo1

I Eo2

I Eolian

I Eolian (improved)



Reception |

Wash, Rinse, Repeat

I Eo1

I Eo2

I Eolian

I Eolian (improved)



Reception |

Wash, Rinse, Repeat

I Eo1

I Eo2

I Eolian

I Eolian (improved)



Impact |

Stability

I Pointer indirection saved us in many cases

I We caught a lot of errors that were not noticed before

I Single point of access for type checking makes it impossible to forget



Impact |

Stability

I Pointer indirection saved us in many cases

I We caught a lot of errors that were not noticed before

I Single point of access for type checking makes it impossible to forget



Impact |

Stability

I Pointer indirection saved us in many cases

I We caught a lot of errors that were not noticed before

I Single point of access for type checking makes it impossible to forget



Impact |

Stability

I Pointer indirection saved us in many cases

I We caught a lot of errors that were not noticed before

I Single point of access for type checking makes it impossible to forget



Impact |

Reduced API

Before:

evas_object_image_file_set(obj , "blah.png", "key");

edje_object_file_set(obj , "blah.edj", "group");

evas_object_del(obj);

ecore_timer_del(obj);

ecore_animator_del(obj);

Now:

eo_do(obj , efl_file_set("blah.file", "key"));

eo_del(obj);



Impact |

Reduced API

Before:

evas_object_image_file_set(obj , "blah.png", "key");

edje_object_file_set(obj , "blah.edj", "group");

evas_object_del(obj);

ecore_timer_del(obj);

ecore_animator_del(obj);

Now:

eo_do(obj , efl_file_set("blah.file", "key"));

eo_del(obj);



Impact |

Reduced API

Before:

evas_object_image_file_set(obj , "blah.png", "key");

edje_object_file_set(obj , "blah.edj", "group");

evas_object_del(obj);

ecore_timer_del(obj);

ecore_animator_del(obj);

Now:

eo_do(obj , efl_file_set("blah.file", "key"));

eo_del(obj);



Eolian |

But writing objects in C is tedious!

I The answer: Eolian

I Eolian parses Eo API declarations

I Eolian allows for automated binding generators

I Eolian is meant to be familar for everyone



Eolian |

But writing objects in C is tedious!

I The answer: Eolian

I Eolian parses Eo API declarations

I Eolian allows for automated binding generators

I Eolian is meant to be familar for everyone



Eolian |

But writing objects in C is tedious!

I The answer: Eolian

I Eolian parses Eo API declarations

I Eolian allows for automated binding generators

I Eolian is meant to be familar for everyone



Eolian |

But writing objects in C is tedious!

I The answer: Eolian

I Eolian parses Eo API declarations

I Eolian allows for automated binding generators

I Eolian is meant to be familar for everyone



Eolian |

But writing objects in C is tedious!

I The answer: Eolian

I Eolian parses Eo API declarations

I Eolian allows for automated binding generators

I Eolian is meant to be familar for everyone



Eolian |

A new format?

I Language independent → easy bindings

I Familiar syntax → easy to pick up

I Easy to read and write

I Declarative and descriptive



Eolian |

A new format?

I Language independent → easy bindings

I Familiar syntax → easy to pick up

I Easy to read and write

I Declarative and descriptive



Eolian |

A new format?

I Language independent → easy bindings

I Familiar syntax → easy to pick up

I Easy to read and write

I Declarative and descriptive



Eolian |

A new format?

I Language independent → easy bindings

I Familiar syntax → easy to pick up

I Easy to read and write

I Declarative and descriptive



Eolian |

A new format?

I Language independent → easy bindings

I Familiar syntax → easy to pick up

I Easy to read and write

I Declarative and descriptive



class Namespace.Class (inherits) {

methods { ... }

properties { ... }

events { ... }

implements { ... }

constructors { ... }

}

type Type_Name: Type_Def;

struct Struct_Name { ... }

enum Enum_Name { ... }



methods {

method_name @class @protected {

params {

@in int x;

@out const(char) *y;

}

return: own(char*);

}

}



properties {

property_name {

keys {

list <int > *x;

}

values {

int v;

}

get {}

set {}

}

}



Eolian |

Generators!

I Initial generator: C

I Further generators in core EFL: C++ and Lua

I Third party generators: Python, efforts being put into Rust, OCaml

I Future generators include JavaScript and others



Eolian |

Generators!

I Initial generator: C

I Further generators in core EFL: C++ and Lua

I Third party generators: Python, efforts being put into Rust, OCaml

I Future generators include JavaScript and others



Eolian |

Generators!

I Initial generator: C

I Further generators in core EFL: C++ and Lua

I Third party generators: Python, efforts being put into Rust, OCaml

I Future generators include JavaScript and others



Eolian |

Generators!

I Initial generator: C

I Further generators in core EFL: C++ and Lua

I Third party generators: Python, efforts being put into Rust, OCaml

I Future generators include JavaScript and others



Eolian |

Generators!

I Initial generator: C

I Further generators in core EFL: C++ and Lua

I Third party generators: Python, efforts being put into Rust, OCaml

I Future generators include JavaScript and others



Eolian |

The Eolian library

I C API: simple and easy to use

I Minimum of non-standard data types → easy to bind

I Not only for generators (IDEs. . . )

I Simple database



Eolian |

The Eolian library

I C API: simple and easy to use

I Minimum of non-standard data types → easy to bind

I Not only for generators (IDEs. . . )

I Simple database



Eolian |

The Eolian library

I C API: simple and easy to use

I Minimum of non-standard data types → easy to bind

I Not only for generators (IDEs. . . )

I Simple database



Eolian |

The Eolian library

I C API: simple and easy to use

I Minimum of non-standard data types → easy to bind

I Not only for generators (IDEs. . . )

I Simple database



Eolian |

The Eolian library

I C API: simple and easy to use

I Minimum of non-standard data types → easy to bind

I Not only for generators (IDEs. . . )

I Simple database



Eolian |

However. . .

I Some things still missing

I Documentation?

I Value ownership

I And possibly others

And yet. . .

I Very useful

I Generic

I I’d like to get it adopted by others (non EFL)



Eolian |

However. . .

I Some things still missing

I Documentation?

I Value ownership

I And possibly others

And yet. . .

I Very useful

I Generic

I I’d like to get it adopted by others (non EFL)



Eolian |

However. . .

I Some things still missing

I Documentation?

I Value ownership

I And possibly others

And yet. . .

I Very useful

I Generic

I I’d like to get it adopted by others (non EFL)



Eolian |

However. . .

I Some things still missing

I Documentation?

I Value ownership

I And possibly others

And yet. . .

I Very useful

I Generic

I I’d like to get it adopted by others (non EFL)



Eolian |

However. . .

I Some things still missing

I Documentation?

I Value ownership

I And possibly others

And yet. . .

I Very useful

I Generic

I I’d like to get it adopted by others (non EFL)



Eolian |

However. . .

I Some things still missing

I Documentation?

I Value ownership

I And possibly others

And yet. . .

I Very useful

I Generic

I I’d like to get it adopted by others (non EFL)



Eolian |

However. . .

I Some things still missing

I Documentation?

I Value ownership

I And possibly others

And yet. . .

I Very useful

I Generic

I I’d like to get it adopted by others (non EFL)



Eolian |

However. . .

I Some things still missing

I Documentation?

I Value ownership

I And possibly others

And yet. . .

I Very useful

I Generic

I I’d like to get it adopted by others (non EFL)



Eolian |

However. . .

I Some things still missing

I Documentation?

I Value ownership

I And possibly others

And yet. . .

I Very useful

I Generic

I I’d like to get it adopted by others (non EFL)



Eolian |

However. . .

I Some things still missing

I Documentation?

I Value ownership

I And possibly others

And yet. . .

I Very useful

I Generic

I I’d like to get it adopted by others (non EFL)



Other Projects |

Clouseau

I Application state inspector for the EFL
I Was not created following Eo (but greatly improved)
I Will get even better with Eolian



Other Projects |

Clouseau

I Application state inspector for the EFL

I Was not created following Eo (but greatly improved)
I Will get even better with Eolian



Other Projects |

Clouseau

I Application state inspector for the EFL
I Was not created following Eo (but greatly improved)

I Will get even better with Eolian



Other Projects |

Clouseau

I Application state inspector for the EFL
I Was not created following Eo (but greatly improved)
I Will get even better with Eolian



Other Projects |

Erigo

I EFL GUI builder
I Reads properties from Eolian

I Supports whatever version is installed on the system automatically
I Supports widgets that it has no notion of

I Has it’s own format that is processed by language specific code generators



Other Projects |

Erigo

I EFL GUI builder

I Reads properties from Eolian

I Supports whatever version is installed on the system automatically
I Supports widgets that it has no notion of

I Has it’s own format that is processed by language specific code generators



Other Projects |

Erigo

I EFL GUI builder
I Reads properties from Eolian

I Supports whatever version is installed on the system automatically
I Supports widgets that it has no notion of

I Has it’s own format that is processed by language specific code generators



Other Projects |

Erigo

I EFL GUI builder
I Reads properties from Eolian

I Supports whatever version is installed on the system automatically

I Supports widgets that it has no notion of
I Has it’s own format that is processed by language specific code generators



Other Projects |

Erigo

I EFL GUI builder
I Reads properties from Eolian

I Supports whatever version is installed on the system automatically
I Supports widgets that it has no notion of

I Has it’s own format that is processed by language specific code generators



Other Projects |

Erigo

I EFL GUI builder
I Reads properties from Eolian

I Supports whatever version is installed on the system automatically
I Supports widgets that it has no notion of

I Has it’s own format that is processed by language specific code generators



Questions |

Questions?

Tom Hacohen
tom.hacohen@samsung.com

http://stosb.com

@TomHacohen

mailto:Tom%20Hacohen%20<tom.hacohen@samsung.com>
http://stosb.com
https://www.twitter.com/TomHacohen


Resources Attributions |

I Nothing


	Main Goals
	Other Object Systems
	What is Eo?
	Internals

	Reception
	Impact
	Eolian
	Other Projects
	Questions
	Appendix

