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class Namespace.Class (inherits) {

methods { ... }

properties { ... }

events { ... }

implements { ... }

constructors { ... }

}

type Type_Name: Type_Def;

struct Struct_Name { ... }

enum Enum_Name { ... }



methods {

method_name @class @protected {

params {

@in int x;

@out const(char) *y;

}

return: own(char*);

}

}



properties {

property_name {

keys {

list <int > *x;

}

values {

int v;

}

get {}

set {}

}

}



Eolian |

Generators!

I Initial generator: C

I Further generators in core EFL: C++ and Lua

I Third party generators: Python, efforts being put into Rust, OCaml

I Future generators include JavaScript and others



Eolian |

Generators!

I Initial generator: C

I Further generators in core EFL: C++ and Lua

I Third party generators: Python, efforts being put into Rust, OCaml

I Future generators include JavaScript and others



Eolian |

Generators!

I Initial generator: C

I Further generators in core EFL: C++ and Lua

I Third party generators: Python, efforts being put into Rust, OCaml

I Future generators include JavaScript and others



Eolian |

Generators!

I Initial generator: C

I Further generators in core EFL: C++ and Lua

I Third party generators: Python, efforts being put into Rust, OCaml

I Future generators include JavaScript and others



Eolian |

Generators!

I Initial generator: C

I Further generators in core EFL: C++ and Lua

I Third party generators: Python, efforts being put into Rust, OCaml

I Future generators include JavaScript and others



Eolian |

The Eolian library

I C API: simple and easy to use

I Minimum of non-standard data types → easy to bind

I Not only for generators (IDEs. . . )

I Simple database



Eolian |

The Eolian library

I C API: simple and easy to use

I Minimum of non-standard data types → easy to bind

I Not only for generators (IDEs. . . )

I Simple database



Eolian |

The Eolian library

I C API: simple and easy to use

I Minimum of non-standard data types → easy to bind

I Not only for generators (IDEs. . . )

I Simple database



Eolian |

The Eolian library

I C API: simple and easy to use

I Minimum of non-standard data types → easy to bind

I Not only for generators (IDEs. . . )

I Simple database



Eolian |

The Eolian library

I C API: simple and easy to use

I Minimum of non-standard data types → easy to bind

I Not only for generators (IDEs. . . )

I Simple database



Eolian |

However. . .

I Some things still missing

I Documentation?

I Value ownership

I And possibly others

And yet. . .

I Very useful

I Generic

I I’d like to get it adopted by others (non EFL)



Eolian |

However. . .

I Some things still missing

I Documentation?

I Value ownership

I And possibly others

And yet. . .

I Very useful

I Generic

I I’d like to get it adopted by others (non EFL)



Eolian |

However. . .

I Some things still missing

I Documentation?

I Value ownership

I And possibly others

And yet. . .

I Very useful

I Generic

I I’d like to get it adopted by others (non EFL)



Eolian |

However. . .

I Some things still missing

I Documentation?

I Value ownership

I And possibly others

And yet. . .

I Very useful

I Generic

I I’d like to get it adopted by others (non EFL)



Eolian |

However. . .

I Some things still missing

I Documentation?

I Value ownership

I And possibly others

And yet. . .

I Very useful

I Generic

I I’d like to get it adopted by others (non EFL)



Eolian |

However. . .

I Some things still missing

I Documentation?

I Value ownership

I And possibly others

And yet. . .

I Very useful

I Generic

I I’d like to get it adopted by others (non EFL)



Eolian |

However. . .

I Some things still missing

I Documentation?

I Value ownership

I And possibly others

And yet. . .

I Very useful

I Generic

I I’d like to get it adopted by others (non EFL)



Eolian |

However. . .

I Some things still missing

I Documentation?

I Value ownership

I And possibly others

And yet. . .

I Very useful

I Generic

I I’d like to get it adopted by others (non EFL)



Eolian |

However. . .

I Some things still missing

I Documentation?

I Value ownership

I And possibly others

And yet. . .

I Very useful

I Generic

I I’d like to get it adopted by others (non EFL)



Eolian |

However. . .

I Some things still missing

I Documentation?

I Value ownership

I And possibly others

And yet. . .

I Very useful

I Generic

I I’d like to get it adopted by others (non EFL)



Other Projects |

Clouseau

I Application state inspector for the EFL
I Was not created following Eo (but greatly improved)
I Will get even better with Eolian



Other Projects |

Clouseau

I Application state inspector for the EFL

I Was not created following Eo (but greatly improved)
I Will get even better with Eolian



Other Projects |

Clouseau

I Application state inspector for the EFL
I Was not created following Eo (but greatly improved)

I Will get even better with Eolian



Other Projects |

Clouseau

I Application state inspector for the EFL
I Was not created following Eo (but greatly improved)
I Will get even better with Eolian



Other Projects |

Erigo

I EFL GUI builder
I Reads properties from Eolian

I Supports whatever version is installed on the system automatically
I Supports widgets that it has no notion of

I Has it’s own format that is processed by language specific code generators



Other Projects |

Erigo

I EFL GUI builder

I Reads properties from Eolian

I Supports whatever version is installed on the system automatically
I Supports widgets that it has no notion of

I Has it’s own format that is processed by language specific code generators



Other Projects |

Erigo

I EFL GUI builder
I Reads properties from Eolian

I Supports whatever version is installed on the system automatically
I Supports widgets that it has no notion of

I Has it’s own format that is processed by language specific code generators



Other Projects |

Erigo

I EFL GUI builder
I Reads properties from Eolian

I Supports whatever version is installed on the system automatically

I Supports widgets that it has no notion of
I Has it’s own format that is processed by language specific code generators



Other Projects |

Erigo

I EFL GUI builder
I Reads properties from Eolian

I Supports whatever version is installed on the system automatically
I Supports widgets that it has no notion of

I Has it’s own format that is processed by language specific code generators



Other Projects |

Erigo

I EFL GUI builder
I Reads properties from Eolian

I Supports whatever version is installed on the system automatically
I Supports widgets that it has no notion of

I Has it’s own format that is processed by language specific code generators



Questions |

Questions?

Tom Hacohen
tom.hacohen@samsung.com

http://stosb.com

@TomHacohen

mailto:Tom%20Hacohen%20<tom.hacohen@samsung.com>
http://stosb.com
https://www.twitter.com/TomHacohen
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