Inlining of
Memcheck helper function fast paths

Julian Seward, jseward@acm.org

31 January 2015. Fosdem. Brussels.

Memcheck

Is a memory access checker:
* checks memory access at byte granularity
* checks definedness at bit granularity
* uses a combination of in-line and out-of-line code

Basic data structure: array of 2-bit values for each byte in address space
* enum { NOACCESS, UNDEFINED, DEFINED, PARTDEFINED }
* For PARTDEFINED, have an auxiliary table. Seldom used.
* Naive implementation even for 32-bit target infeasible ...
* ... array would require 1 GB

Two-level map scheme

For a 32-bit address space:
* Divide address space into 64KB chunks -- Secondary Maps
* Have a 64K entry Primary Map

64K entries

N N .

secondary map, 2 bits per byte

64K entries

Two-level map scheme

For a 32-bit address space:
* Divide address space into 64KB chunks -- Secondary Maps
* Have a 64K entry Primary Map

64K entries

primary map

secondary map, 2 bits per byte

64K entries

_ “Distinguished” secondary map
All 64k entries are NOACCESS

* Distinguished secondary map makes reads faster
* No need for a NULL check

32-bit load fast path

Goal: given an address
* check we can read all 4 bytes, report errors if not
* get the 32 definedness bits for the address

Optimise for common case
* address is 4-aligned
* location is accessible
* location contains defined data

Actions
* alignment check: check addr is of form X--(30)--X00

* read pri map: sm = pri map[addr >> 16]
* read sec map: vbits8 = sm[(addr >> 2) & 0x3FFF]
* check defined: check vbits8 == 0xAA
Total cost
* 2]oads

* 2 conditional branches, totally predictable
* 5 shots on the ALU

(test, branch)
(shift, load)
(shift, and, load)
(cmp, branch)

Fast paths, as currently integrated

JIT generated code gcc generated code

! p helperc_LOAD32le

\ helperc STOREl6le
1

/

This is crazy! (but at least it's simple :-)

Call/return overheads are larger than the fast path cost (at least, superficially ..)

caller: spill caller-save regs before call ..

caller: .. and restore afterwards

caller: shuffle args into arg regs, and out of result regs
callee: save regs in prologue ..

callee: .. and restore in epilogue

can be terrible if gcc is having a bad day

So, what to do?

What we want
* fast paths in-line
* precise control of fast path insns (that includes “No Spilling Please”)
* ... but architecture neutral
* no massive code bloat (icache misses, and JIT slowdowns)

The obvious answer ...
* generalise existing basic-block-at-a-time JIT

to add arbitrary control flow
... implies years of work ...
* rewrite entire JIT

* add CFG, dominance frontiers, phi nodes, new IR optimiser, new reg allocator

... 1s a losing proposition.

So, really what to do?

Plan B: Cheat.
* Keep existing basic-block-at-a-time JIT as-is
* Replace helper calls by machine-code templates

* Template is a single “big instruction”
* travels through the JIT pipeline unchanged
* reg alloc treats it like any other insn: gives it in/out/scratch regs
* when it finally arrives at the assembler, we finally have to Do Something
* instantiate the template
* That's pretty much all

32-bit load template

NCode [rl] [al]

hot:
0

O & WNDNPEFPF OHOWVWOLWNO Ul WD K-

test.w
bne
shr.w
1d.w
and.w
shr.w
ldub.w
Cmp .w
bne
imm
nop

¢ mov.w

imm.w
Cmp .w
beq
call
b

[s1] {

al, S$MASK

cold.4

sl, al, S16

sl, [$PRIMARY MAP + sl << 2] // sSM

rl, al, SOXFFFF // SMOff
rl, rl, $2 // SMoff
rl, [sl + rl] // AVbits
rl, S$Oxaa

cold.O

rl, SO

sl, rl // AVBits

rl, SOXffffffff

sl, $0x55

hot.10

[rl] = LOADV32le SLOW [al]
hot.10

Single-entry single-exit, but split into hot/cold code
Stylised 3-address code
Template registers: R(result), A(argument), S(scratch)

After register allocation

NCode [rl] [al]

hot:
0

O & WNDNPEFPF OHOWVWOLWNO Ul WD K-

test.w
bne
shr.w
1d.w
and.w
shr.w
ldub.w
Cmp .w
bne
imm
nop

¢ mov.w

imm.w
Cmp .w
beq
call
b

we have (eg)
and (eg)
use live-after to calculate spill-sets around the call

[s1l] {
al, S$MASK
cold.4

sl, al, Sl6

sl, [$PRIMARY MAP + sl << 2] // sSM

rl, al, SOXFFFF // SMOff
rl, rl, $2 // SMoff
rl, [sl + rl] // AVbits
rl, S$Oxaa

cold.O

rl, SO

sl, rl // AVBits

rl, SOXffffffff

sl, $0x55

hot.10

[r1] = LOADV32le SLOW [al]

hot.10

rl = %edi al = %ebx sl = %esi
live-after = {%eax, %ebx, %ecx, %edi,

gxmml,

gxmm4 }

After generating native code

NCode [%edi] [%ebx] [%esi] { // [rl] [al] [s1]
hot:
0 test SMASK, %ebx // test.w al, S$SMASK
1 Jnz cold.4 // bne cold.4
2 movl %ebx,%esi; shrl $16, %esi // shr.w sl, al, $16
3 movl SPRI_MAP(,%esi,2), %esi // 1ld.w sl, [SPRI_MAP + sl << 2]
4 movzwl %ebx, %edi // and.w rl, al, SOXFFFF
5 shrl $2, %edi // shr.w rl, rl, $2
6 movzbl (%esi,%edi), %edi // ldub.w rl, [sl + rl]
7 cmp SOxaa, %edi // cmp.w rl, $0xaa
8 jnz cold.O // bne cold.O
9 movl $0, %edi // imm rl, $O
10 (no-code) // nop
cold:
0: movl %edi, %esi // mov.w sl, rl
1: movl SOXffffffff, %edi // imm.w rl, SOxXffffffff
2: cmpl $0x55, %esi // cmp.w sl, $0x55
3: jz hot.10 // beq hot.10
4: save-some-regs; movl %ebx,%eax; call LOADV32le SLOW;

movl %eax,%edx; restore-some-regs
// call [rl] = LOADV32le SLOW [al]
5: jmp hot.10 // b hot.10

* hot.2: 3-vs-2 address bites us, but only once
* cold.4: call overheads still present, but confined to cold path only

Instantiation summary

Instantiator's duties

reg-alloc specifies a real register for each template register
generate native code, using that mapping

reg-alloc also gives live-after set

use this to spill around C calls

.. so don't put C calls on the hot path

What the generic JIT framework does for us

concatenates all hot sections and all cold sections

.. so the “main trace” for entire instrumented basic block is straight-line code
.. conforming to “forward-branches-not-taken” rule

performs relocations for jumps

What's the per-architecture burden?

instantiator -- map to native insns
calls -- need to spill/restore around call
calls -- need to marshal arg and result values

Challenges

Template must be architecture neutral.
Yet generate good code
Tricky, for: x86, amd64, s390x, ppc32, ppc64, mips32, mips64, arm32, arm64
unavoidable kludging for 64-bit loads/stores on 32 bit targets

Verifying that templates are correct
a serious worry

2-addr or 3-addr in the templates?
shr.w rl, al, $2 isnot1 insnon x86. Must generate mov; shr
strategy: keep 3-addr in templates
so as not to disadvantage 3-address archs (eg arm32)

Avoiding JIT slowdowns
we're generating 50%-100% more code

Making sense of observed performance changes
are we trashing the icache?

Current status

Status:
* amd64 (x86_64) proof of concept up and running
* templates for 32- and 64-bit loads only
* generates hot section code identical to gcc-4.9.2
* 0% to 14% perf improvement (perf/tinycc.c)
* approx 50% code bloat (15:1 --> 22:1)

* svn://svn.valgrind.org/valgrind/branches/NCODE
* entire JIT pipeline and Memcheck almost unchanged

* (afew hundred lines of diff)

* amd64 template expander is < 1000 lines

What next?

Wrap up initial amd64 work
* add templates for 16- and 8-bit loads
* see if I can hit 20% perf improvement on Haswell
* measure hot vs cold code sizes, and I/D cache effects

Verify sanity on a second arch: arm32
* Implement arm32 template expander

* It's important that arm32 works well

Improve testing of Memcheck shadow memory
* this hackery is a correctness hazard

Tidy up, implement all archs

Testers, hackers, experimenters welcome!

Questions?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15

