
1

Running Valgrind
on multiple processors:

a prototype

Philippe Waroquiers
FOSDEM 2015 valgrind devroom

2

Valgrind and threads

● Valgrind runs properly multi-threaded
applications

● But (mostly) runs them using a single CORE
● Valgrind needs a lot of CPU :

● Depending on the tool,
single-threaded applications
are slowed down
by a factor 4x to 100x or more

Valgrind and CPU consumption

● Significant development effort was and is spent
to make Valgrind faster e.g.
● Improvement of the JIT generated code
● Self-modifying code detection
● Translation chaining
● Tool specific performance improvement
● …

Improving Valgrind speed

● Improving 'sequential' speed is good for all
applications
● However, often, the last years, the gains are small

typically around 5 .. 10%

● Multi-threaded CPU bounded applications
would benefit a lot from parallelising Valgrind
● But how hard is that ?

Valgrind layers

Tool “runtime” code

Generated/instrumented code
(from program to run)

JIT decoder and compiler, malloc replacement, scheduler, ...

TOOL

GUEST

Valgrind CORE
layer

Tool instrument function

Valgrind layers typical control flow

1. CORE decodes guest code : instructions to IR

2. CORE calls TOOL instrument : IR to IR.
Instrumented code typically contains many calls
to TOOL runtime code or CORE code.

3. CORE translates instrumented code to
executable code : IR to instructions

4. Instructions stored in the translation table

5. Valgrind scheduler calls the translation

(Most of) Valgrind code is
non-reentrant/non thread-safe

● Translation is non thread-safe: VEX lib, tool
instrument function, CORE translation
framework, ...

● “Run time” is non thread-safe:
● CORE scheduler, CORE malloc/free, CORE

aspacemgr, CORE statistics, …
● TOOL runtime code, e.g. memcheck malloc/free,

memcheck VA bits data structures, …

● So, why is Valgrind able to run properly multi-
threaded applications ?

Valgrind “big lock” model
● Valgrind has a big lock

● The big lock protects all Valgrind data structures/all
Valgrind global variables/all tool data structures/...

● Big lock implemented via a 'pipe based lock'
(default) or via futex ('ticket lock'), cfr --fair-sched

● To execute JIT-ted guest or tool or core code,
a thread first must acquire the big lock

● A thread releases the lock
● After it has executed 100K basic blocks

 or
● Before entering in a blocking syscall

To parallelise Valgrind

● We must
● Remove the big lock

or
● At least decrease the use of the big lock

Parallelising Valgrind
possible techniques

● Read/write locks
● (fine grained) mutex locks
● Atomic instructions
● Thread local storage instead of global variables
● Lock-less algorithms/data structures
● ….

● A prototype has used some of the above to
parallelise some (small) parts of Valgrind

What to parallelise (first) ?

● A typical tool/application spends most of CPU in
the generated JIT code, in the TOOL and
CORE “runtime” code

● The time spent in TOOL instrument function is
normally not a major part

● => First idea: ensure that the threads are
running guest JIT-ted code in parallel

Running JIT-ted code in parallel
Basic idea

● Replace 'mutex Big lock' by 'read/write Big lock'
● A thread acquires the RW Big lock

● In read mode to run guest JIT-ted code
● In write mode to do anything else

● First implementation of basic idea:
● Objective: ensure 'none' tool runs in parallel
● How : RW lock implemented on top of 'pipe based

locks'

Running JIT-ted code in parallel
First implementation expected results

● Of course, first implementation will be efficient
● As the pipe based lock is efficient enough for

current Valgrind, the rw lock will be efficient enough
for parallel use

● Of course, first implementation will be correct
● As “none” tool means no Valgrind data structure are

accessed when running JIT-ted guest code

● Of course, all above
● was shown WRONG !!!

Running JIT-ted code in parallel
First implementation problems

● Lack of efficiency when translating new code:
● When new code to be translated, sequential

valgrind just keeps the lock
● Parallel Valgrind needs to (re-)acquire the lock in

Write mode => a lot more (expensive) 'lock/unlock'

● Lack of correctness
● What looks like a 'read-only' action (execute already

translated code) is in fact doing many updates e.g.
– statistical counters
– fast cache associating guest code with JIT code
– Translation chaining
– ...

Running JIT-ted code in parallel
Fixing first implementation

● Better way to find non thread safe code
● Valgrind and helgrind were improved to allow to run

an 'inner parallel valgrind' under an outer helgrind
● Improvements are now in Valgrind release :

it is now easy/ier to run Valgrind under Valgrind
● Helgrind was used to find race conditions in

prototype parallel Valgrind

● Efficiency :
● RW lock based on (slow) pipe based mutexes

replaced by RW lock code copied/modified from
glibc

16

Read the patch...

Prototype code accessible in SVN MTV branch
see also doc/internals/mtV.txt

Multi-threaded Valgrind : challenges
Valgrind core

● Make (more of) core parallel/thread-safe
● Prototype is far to be complete/correct

● Probably/maybe we need an option
to have sequential run of parallel tools

(e.g. to avoid memcheck false + or -)
or avoid running non parallel tools in parallel

● Implement atomic ops for other arch
● What about Darwin and fast mutex ?

Multi-threaded Valgrind : challenges
Making Valgrind tools parallel

● At least memcheck (the most used tool)
● Keep cpu and/or memory efficiency is difficult

(apart of trivial tools such as --tool=none)
● No tool was made parallel (except none)

● Parallel memcheck somewhat discussed/tried
● Draft proposal of new VA-bits approach made by

Julian Seward

Multi-threaded Valgrind : challenges
Memcheck VA-bits data structure

● Is currently highly optimised, CPU and memory
● No solution found that at the same time

● Is efficient in CPU and memory
● and has no false + and/or false -

● Maybe make 'VA-bits read' inline fast, 'VA-bits
write' use mutex ? (or an option to activate write
mutex)

● Maybe we need tuning options such as
--va-bits=sequential | parallel-cpu

| parallel-memory | …

Multi-threaded Valgrind : challenges

● Probably many challenges not known yet …
● Because not exercised by the prototype 'testing'
● Many core modules not looked at

e.g. Valgrind malloc, error mgr, stack unwind, ...

● Do all the above without slowing down the
sequential case
● Many optimisations to be redone/reworked !

Questions?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21

