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Valgrind and threads

● Valgrind runs properly multi-threaded 
applications

● But (mostly) runs them using a single CORE
● Valgrind needs a lot of CPU :

● Depending on the tool,
single-threaded applications
are slowed down
by a factor 4x to 100x or more



Valgrind and CPU consumption

● Significant development effort was and is spent 
to make Valgrind faster e.g.
● Improvement of the JIT generated code
● Self-modifying code detection
● Translation chaining
● Tool specific performance improvement
● …



Improving Valgrind speed 

● Improving 'sequential' speed is good for all 
applications
● However, often, the last years, the gains are small

typically around 5 .. 10%

● Multi-threaded CPU bounded applications
would benefit a lot from parallelising Valgrind
● But how hard is that ?



Valgrind layers

Tool “runtime” code

Generated/instrumented code
(from program to run)

JIT decoder and compiler, malloc replacement, scheduler, ...

TOOL

GUEST

Valgrind CORE
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Tool instrument function



Valgrind layers typical control flow 

1. CORE decodes guest code : instructions to IR

2. CORE calls TOOL instrument : IR to IR.
Instrumented code typically contains many calls 
to TOOL runtime code or CORE code.

3. CORE translates instrumented code to 
executable code : IR to instructions

4. Instructions stored in the translation table

5. Valgrind scheduler calls the translation



(Most of) Valgrind code is 
non-reentrant/non thread-safe 

● Translation is non thread-safe: VEX lib, tool 
instrument function, CORE translation 
framework, ...

● “Run time” is non thread-safe:
● CORE scheduler, CORE malloc/free, CORE 

aspacemgr, CORE statistics, …
● TOOL runtime code, e.g. memcheck malloc/free, 

memcheck VA bits data structures, …

● So, why is Valgrind able to run properly multi-
threaded applications ? 



Valgrind “big lock” model 
● Valgrind has a big lock

● The big lock protects all Valgrind data structures/all 
Valgrind global variables/all tool data structures/...

● Big lock implemented via a 'pipe based lock' 
(default) or via futex ('ticket lock'), cfr --fair-sched

● To execute JIT-ted guest or tool or core code,
a thread first must acquire the big lock

● A thread releases the lock
● After it has executed 100K basic blocks

   or
● Before entering in a blocking syscall



To parallelise Valgrind 

● We must
● Remove the big lock

or
● At least decrease the use of the big lock 



Parallelising Valgrind
possible techniques 

● Read/write locks
● (fine grained) mutex locks
● Atomic instructions
● Thread local storage instead of global variables
● Lock-less algorithms/data structures
● ….

● A prototype has used some of the above to 
parallelise some (small) parts of Valgrind 



What to parallelise (first) ? 

● A typical tool/application spends most of CPU in 
the generated JIT code, in the TOOL and 
CORE “runtime” code

● The time spent in TOOL instrument function is 
normally not a major part 

● => First idea: ensure that the threads are 
running guest JIT-ted code in parallel



Running JIT-ted code in parallel
Basic idea

● Replace 'mutex Big lock' by 'read/write Big lock'
● A thread acquires the RW Big lock

● In read mode to run guest JIT-ted code
● In write mode to do anything else

● First implementation of basic idea:
● Objective: ensure 'none' tool runs in parallel
● How : RW lock implemented on top of 'pipe based 

locks'



Running JIT-ted code in parallel
First implementation expected results

● Of course, first implementation will be efficient
● As the pipe based lock is efficient enough for 

current Valgrind, the rw lock will be efficient enough 
for parallel use

● Of course, first implementation will be correct
● As “none” tool means no Valgrind data structure are 

accessed when running JIT-ted guest code

● Of course, all above
● was shown WRONG !!!



Running JIT-ted code in parallel
First implementation problems

● Lack of efficiency when translating new code:
● When new code to be translated, sequential 

valgrind just keeps the lock
● Parallel Valgrind needs to (re-)acquire the lock in 

Write mode => a lot more (expensive) 'lock/unlock'

● Lack of correctness
● What looks like a 'read-only' action (execute already 

translated code) is in fact doing many updates e.g.
– statistical counters
– fast cache associating guest code with JIT code
– Translation chaining
– ...



Running JIT-ted code in parallel
Fixing first implementation

● Better way to find non thread safe code
● Valgrind and helgrind were improved to allow to run 

an 'inner parallel valgrind' under an outer helgrind
● Improvements are now in Valgrind release :

it is now easy/ier to run Valgrind under Valgrind
● Helgrind was used to find race conditions in 

prototype parallel Valgrind

● Efficiency :
● RW lock based on (slow) pipe based mutexes 

replaced by RW lock code copied/modified from 
glibc 
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Read the patch...

Prototype code accessible in SVN MTV branch
see also doc/internals/mtV.txt



Multi-threaded Valgrind : challenges
Valgrind core

● Make (more of) core parallel/thread-safe
● Prototype is far to be complete/correct

● Probably/maybe we need an option
to have sequential run of parallel tools

(e.g. to avoid memcheck false + or -)
or avoid running non parallel tools in parallel

● Implement atomic ops for other arch
● What about Darwin and fast mutex ?



Multi-threaded Valgrind : challenges
Making Valgrind tools parallel

● At least memcheck (the most used tool)
● Keep cpu and/or memory efficiency is difficult

(apart of trivial tools such as --tool=none)
● No tool was made parallel (except none)

● Parallel memcheck somewhat discussed/tried
● Draft proposal of new VA-bits approach made by 

Julian Seward



Multi-threaded Valgrind : challenges
Memcheck VA-bits data structure

● Is currently highly optimised, CPU and memory
● No solution found that at the same time

● Is efficient in CPU and memory
● and has no false + and/or false -

● Maybe make 'VA-bits read' inline fast, 'VA-bits 
write' use mutex ? (or an option to activate write 
mutex)

● Maybe we need tuning options such as
--va-bits=sequential | parallel-cpu

| parallel-memory | …



Multi-threaded Valgrind : challenges

● Probably many challenges not known yet …
● Because not exercised by the prototype 'testing'
● Many core modules not looked at

e.g. Valgrind malloc, error mgr, stack unwind, ...

● Do all the above without slowing down the 
sequential case
● Many optimisations to be redone/reworked ! 



Questions?
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