
Testing interoperability with 
closed-source software through 

scriptable diplomacy

Ole André Vadla Ravnås
Karl Trygve Kalleberg



Who are we?

Ole André Vadla Ravnås

● Author of Frida, CryptoShark, oSpy, 

libmimic…

● Developer, hacker and reverse engineer

● Currently working at NowSecure

● Doing R+D on mobile platforms

Karl Trygve Kalleberg

● Trusty sidekick

● Sporadic contributor to Frida, NixOS, 

Spoofax, Stratego/XT, Gentoo (way back) , ... 

● Developer, hacker, forward engineer

● Working at KolibriFX and Sensonomic

● Doing all-round backend development

@karltk@oleavr



What is Frida?

● Dynamic instrumentation toolkit
○ Inspect and instrument live processes

○ Execute instrumentation scripts inside other processes

○ Scripts are 

■ written in JavaScript

■ executed on a JS interpreter running inside the inspected process

● Multi-platform
○ Windows, Mac, Linux, iOS, Android, QNX

● Open-source
○ xWindows Library Licence, Version 3.1



Demo

frida-trace



How does Frida work?

Frida
(frida-trace) Target

bootstrapper

Frida process writes bootstrapper code into memory of Target process



How does Frida work?

Frida Target

bootstrapper

Frida hijacks an existing thread in Target and has it execute bootstrapper

bootstrapper 
thread



How does Frida work?

Frida Target

bootstrapper

Bootstrapper loads frida-agent.so into Target’s memory space

bootstrapper 
thread

frida-agent.so



How does Frida work?

Frida Target

bootstrapper

Frida-agent.so opens a bidirectional channel between Frida and Target

bootstrapper 
thread

frida-agent.so



How does Frida work?

Frida Target

Frida-agent.so sets up its own thread, and accepts instrumentation scripts from Frida

frida-agent.so

Frida thread

Instrumentation 
scripts



Why use Frida for testing?

● Reach internal, closed-source functionality
○ Lift logic out of closed frameworks into your tests

○ Modify behaviour of closed frameworks to improve testing

○ Theme: black box → grey box testing

● Caveats apply
○ Warnings as for invasive software composition, especially

■ Brittle: framework internals may change

■ Time-consuming: Reverse-engineering becomes necessary

○ Your test suite may become quite complex quite quickly



Running example: ConferenceBeats

● Open-source application for iOS
○ (Almost) available on GitHub

● Plays material from the Spotify record collection
○ When you recompile it, you can change the list - open source, yeah!

● For demo purposes only

○ Open-source application on a closed OS, dependent on closed online services + support 

libraries

○ (= The new world order?)



#1: Fill in Spotify login automatically

● Keyword: UI automation

● Challenges
○ On closed-source iOS

○ Login form is a web form, inside a UIWebView

○ The UIWebView is fully controlled by closed-source Spotify.Framework (abbrev S.F)

● Solution
○ Inject JavaScript into UIWebView with Frida



#2a: S.F must always use HTTPS

● Keyword: Property-based testing

● Challenges
○ Want to write an assertion over the stream of network calls

○ No control over calls from Spotify.Framework into CFNetwork

● Solution
○ Use Frida’s tracing features to inspect all calls to CFNetwork



#2b: S.F must use specific servers

● Keyword: Property-based testing

● Challenges
○ Want to write an assertion over the stream of network calls

○ No control over calls from Spotify.Framework into CFNetwork

● Solution
○ Use Frida’s tracing features to inspect all calls to CFNetwork



#3: Simulating flaky networks

● Keyword: Regression testing

● Challenge
○ Want to ensure 3rd party library gracefully handles flaky network

○ (Current S.F version does not)

● Solution
○ Hook network calls—simulate lost connection

○ Check for non-empty login popup



What are other applications for Frida?

● Networking

○ Emulate captive gateway

○ Apply test properties only for 3rd party 

libraries, based on stack trace

● Predictable data

○ Random/unpredictable data sources in 

framework → deterministic values

■ E.g., for camera, microphone, 

motion sensors

● Cross-framework workflows

○ Simulate SMS-based auth

● Resource starvation

○ Insufficient heap space

○ Insufficient disk space

○ Failure to open camera/mic

● Time

○ Simulate different passing of time

■ Faster/slower progression

■ “Reverse” (e.g., tz adjust)

○ Will my app work in 2020?

○ Is my video conference still in sync after 

2 days?



Take home messages

● Frida is applicable to certain kinds of tests
○ Especially regression and integration

● Succinct test code is possible 
○ … even for complicated test scenarios

● Use sparingly
○ Prefer vendor-provided testing frameworks that are maintained

● Beware the brittleness
○ Be mindful of any reverse engineering necessary


