
DRAWINGLAYER PRIMITIVES WORKSHOP
WHAT THEY ARE, HOW TO USE OR CREATE 
NEW ONES

CIB GROUP



Contents

> Who is talking about it?

> Motivation – why are they needed?
– Past, Future (Ideal State), Present

> DrawingLayer Primitive
– Definition, Requirements, Implementation, 3D, Examples

> DrawingLayer Processor
– Definition, Implementation, Examples

> How to create a new Primitive
– From Generic or Group Primitives

> Future, Examples



Who is talking about it?

> Working on the Office for 15 Years

> Experience in Graphic Processing

> Always interested in graphic aspects

> Involved in Draw/Impress/DrawingLayer

> Involved in DrawingLayer usages (all other Apps)

> Often got Involved when graphics 'did not work'

> Started to change how the Office is processing 
Graphis because it needs to be done



Why are DrawingLayer Primitives needed?
Past:

> Procedural Paint model (no 'real' MVC)

> No separation of repaint/direct paint (invalidate)

> Vcl and OutputDevice for everything – pros and cons

> Paint, Print, Import/Export

> Metafile (Contained 'Workarounds', unflexible)

> Flickering when scrolling, Interactions

> Missing AnitiAliasing, 3D

> Missing quality (Integer coordinates, what...?)

> No Reusability (Tooling, Processing, Im/Export)



Why are DrawingLayer Primitives needed?
Future (Ideal State):

> Generic, Minimal, Reusability, Object-Oriented, 
Modular, Self-Contained (Read-Only)

> On-Demand create/destroy/buffer (object lifetime)

> AntiAliasing, Buffering

> Not only 'Paint', but Graphic Processing

> Easily adaptable to new Graphic Sub-Systems

> Easy to understand/flat learning curve

> Based on UNO API

> Render all EditViews in the future using Primitives



Why are DrawingLayer Primitives needed?
Present:

> Good working Implementation (prove by doing)

> Draw/Impress completely using Primitives (including UI)

> Writer/Calc partially, coexistence of old/new required

> Renderers used for Print/Paint/HitTest/Conversions

> Conversion from/to Metafile (with all hacks...)

> Exporters/Importers (SVG)

> NO Load/Save, more to be seen as a runtime Tooling

> Limited UNO API

> Using basegfx graphic tooling (quality/precision)



DrawingLayer Primitive
Definition:

> Based on UNO API (XPrimitive2D)
– Two methods

● getDecomposition(ViewPrarameters)
● getRange(ViewPrarameters)

– Ref-Counted, Read-Only, sequence< XPrimitive2D >

> getDecomposition adds the needed flexibility
– This makes the difference compared to metafile

> Two basic types
– Generic Primitives: can not be decomposed further

– Group Primitives: allow structuring and embedding



DrawingLayer Primitive
Definition:

> The four Generic Primitives are:
– BitmapPrimitive2D

– PointArrayPrimitive2D

– PolygonHairlinePrimitive2D

– PolyPolygonColorPrimitive2D

> A Primitive that can not be decomposed further is a 
Generic Primitive

> Everything else can be decomposed to these

> Being extreme, this could even be reduced (all 
Bitmaps...?)



DrawingLayer Primitive
Definition:

> GroupPrimitive2D for structuring (returns Childs)

> The four basic Group Primitives are:
– TransformPrimitive2D

– TransparencePrimitive2D

– MaskPrimitive2D

– ModifiedColorPrimitive2D

> For processing, this is the set to be supported
– Some processors even use less (geometry extractors)

– For better performance, support more (e.g. fat line, simple 
transparence)



DrawingLayer Primitive
Requirements:

> Self-contained (Data, References)

> Read-Only (just get...() methods)

> Separate Graphics into Definition and Processing

> getDecomposition for non-Generic Primitives required

> Support for buffering decompositions

> Support for View-Dependent decompositions

> Support for getRange uses decomposition

> GroupPrimitive2D derivates can anytime be used to 
encapsulate specific information, does no harm



DrawingLayer Primitive
Implementation:

> Basic Primitives are in drawinglayer project

> More are implemented wherever needed (60-80?)

> As long as decomposition creation is supported, the 
Primitive will be processed/rendered

> GetRange() may even be moved to an own Processor

> Operator== in implementation may be removed (aw080)

> Primitives need to be self-contained

> Primitives may be very 'complex' (whole SdrObject…?)

> Implementation supports unique ID for switch Statements



DrawingLayer Primitive
3D:

> In parallell, primitive definitions exist for 3D

> XPrimitive3D UNO API and implementation
– Generic 3D Primitives are:

● PolygonHairlinePrimitive3D
● PolyPolygonMaterialPrimitive3D

– Group 3D Primitives are:
● TransformPrimitive3D
● TexturePrimitive3D (Gradient, Transparence, Bitmap, Hatch)

> Implementation of 3D Scene is itself a 2D Primitive, 
decomposing to a Bitmap (except shadow, uses a processor)



DrawingLayer Primitive
Examples:

> Generic Primitives:

– AnimatedPrimitive

– CropPrimitive

– GridPrimitive

– UnifiedTransparencePrimitive

– TextDecoratedPrimitive

– Metafileprimitive

> Group Primitives:

– HiddenGeometryPrimitive

– InvertPrimitive

– ShadowPrimitive



DrawingLayer Processor
Definition:

> Not (yet) based on UNO API, BaseProcessor2D/3D
– Unified processing of a sequence of Primitives

● Contains needed ViewInformation
● Single call 'process(Primitives)'

– Detects if Primitive instances are own implementation. If not, 
get decomposition using UNO API and call recursively

– Implementations fetch unique ID from Prinitive and use one 
switch..case Block

– Generic Primitives need to be implemented and rendered

– Group primitives are partially generic supported
● TransformPrimitive2D creates updated 

ViewTransformation, calls recursively with children



DrawingLayer Processor
Implementation:

> Basic Processors for 2D
– VclProcessor for Pixel-Target (VCL OutputDevice)

– MetafileProcessor (VCL Metafile, Print, PDF export, …)

> Basic Processor for 3D (soft-renderer, AAed, …)

> Todo: Generic, system-specific Renderers
– For 2D Pixel-Target, could greatly increase Speed

– For 3D Target

– For Exports: PDF, SVG, ...



DrawingLayer Processor
Examples:

> Not only rendering – lot of other processing:
– ContourExtractor

– HitTestProcessor

– LineGeometryExtractor

– TextAsPolygonExtractor

> UNO API:
– The decomposition implementation of UNO API incarnations 

of Primitives is used

– There is the interface XPrimitive2DRenderer to convert any 
sequence of Primitives to Bitmap format



How to create a new Primitive
From Generic Primitive:

> Minimal Steps:
– Derive from

● BasePrimitive2D
● Implement decomposition

– Use it (Incarnate, add to sequence, …)

> From that moment on, Your Geometry will be handled 
correctly throughout the Office. Screen visualization, 
Print, PDF Export, SVG export, ...



How to create a new Primitive
From Generic Primitive:

> Optional:
– Derive from BufferedDecompositionPrimitive2D (optional use 

DiscreteMetricDependentPrimitive2D ViewportDependentPrimitive2D 

ViewTransformationDependentPrimitive2D)

– React eventually View-Dependent inside decomposition

– Implement operator==

– Implement getB2DRange

– Add to Processors of your choice when you want/need 
special handling in that Rendererer



How to create a new Primitive
From Group Primitive:

> Data embedding:
– Derive from Group Primitive, add your Data, embed all other 

Primitives as children

– Add to the Processor where you need (and know) it, use it 
there

– Every other Processor will ignore it, using children as 
decomposition

> Using existing sequence of Primitives:
– Get it's current Range, create needed Transformation, embed 

to new TransformPrimitive2D

– Embed to MaskPrimitive2D with new clipping PolyPolygon

– Embed to ModifiedColorPrimitive2D to force e.g. to all-Black



Future

> Make even more Generic:
– Aw080: operator== removed

– UNO API: provide/implement for the basic Primitives to allow 
using them from other languages

– Reduce number of basic Primitives further (All Bitmaps…?)

– Remove getRange(), replace with dedicated Processor

> Use more:
– Migrate more parts of the Office to use Primitives

– EditViews, EditEngine, ...

> Get faster:
– Create system-specific Renderers for 2D/3D/all Systems



Future

> Add Support for nicer Gradients
– What about a SVGGradientPrimitive…?

> Add Support for Graphic Im/Exporters
– SVG import already uses it

– SVG export, PDF export could profit (quality, precision)

– Most known Metafiles, would increase quality and Clipboard

> No-Go's:
– Do not add a GraphicFormat to save/load Primitives, this 

would freeze current definitions. That was the beginning of 
all Problems with Metafiles...



Examples

> Enough Text, Let the Office talk...



Thank You for watching!

> To not Forget:

Your Help is 
Needed to drive 

this forward!


	CIB Group
	Folie 2
	Folie 3
	Folie 4
	Folie 5
	Folie 6
	Folie 7
	Folie 8
	Folie 9
	Folie 10
	Folie 11
	Folie 12
	Folie 13
	Folie 14
	Folie 15
	Folie 16
	Folie 17
	Folie 18
	Folie 19
	Folie 20
	Folie 21
	Folie 22
	Folie 23

