cig®

CIB GROUP

DRAWINGLAYER PRIMITIVES WORKSHOP

WHAT THEY ARE, HOW TO USE OR CREATE
NEW ONES




cig®

Contents

> Who is talking about it?

> Motivation — why are they needed?

— Past, Future (Ideal State), Present
> Drawinglayer Primitive
- Definition, Requirements, Implementation, 3D, Examples

> Drawinglayer Processor

- Definition, Implementation, Examples

> How to create a new Primitive

— From Generic or Group Primitives

> Future, Examples



Who is talking about it?

>

>

>

>

Working on the Office for 15 Years

Experience in Graphic Processing

Always interested in graphic aspects

Involved in Draw/Impress/DrawinglLayer
Involved in DrawinglLayer usages (all other Apps)
Often got Involved when graphics 'did not work'

Started to change how the Office is processing
Graphis because it needs to be done

cig®



cig®

Why are DrawinglLayer Primitives needed?
Past:

> Procedural Paint model (no 'real' MVC)

> No separation of repaint/direct paint (invalidate)

> Vcl and OutputDevice for everything — pros and cons
> Paint, Print, Import/Export

> Metafile (Contained 'Workarounds', unflexible)

> Flickering when scrolling, Interactions

> Missing AnitiAliasing, 3D

> Missing quality (Integer coordinates, what...?)

> No Reusability (Tooling, Processing, Im/Export)



Why are DrawinglLayer Primitives needed? CiB
Future (Ideal State):

> Generic, Minimal, Reusability, Object-Oriented,
Modular, Self-Contained (Read-Only)

> On-Demand create/destroy/buffer (object lifetime)
> AntiAliasing, Buffering

> Not only 'Paint’, but Graphic Processing

> Easily adaptable to new Graphic Sub-Systems

> Easy to understand/flat learning curve

> Based on UNO API

> Render all EditViews in the future using Primitives



cig®

Why are DrawinglLayer Primitives needed?
Present:

> Good working Implementation (prove by doing)

> Draw/Impress completely using Primitives (including UI)
> Writer/Calc partially, coexistence of old/new required

> Renderers used for Print/Paint/HitTest/Conversions

> Conversion from/to Metafile (with all hacks...)

> Exporters/Importers (SVG)

> NO Load/Save, more to be seen as a runtime Tooling

> Limited UNO API

> Using basegfx graphic tooling (quality/precision)



cig®

DrawinglLayer Primitive

Definition:

> Based on UNO API (XPrimitive2D)

- Two methods
* getDecomposition(ViewPrarameters)

* getRange(ViewPrarameters)

- Ref-Counted, Read-Only, sequence< XPrimitive2D >

> getDecomposition adds the needed flexibility

— This makes the difference compared to metafile

> Two basic types
— Generic Primitives: can not be decomposed further

— Group Primitives: allow structuring and embedding



>

>

>

>

DrawinglLayer Primitive

Definition:

The four Generic Primitives are:
- BitmapPrimitive2D

- PointArrayPrimitive2D

- PolygonHairlinePrimitive2D

- PolyPolygonColorPrimitive2D

A Primitive that can not be decomposed further is a
Generic Primitive

Everything else can be decomposed to these

Being extreme, this could even be reduced (all
Bitmaps...?)

cig®



0
DrawinglLayer Primitive ciB

Definition:

> GroupPrimitive2D for structuring (returns Childs)

> The four basic Group Primitives are:
— TransformPrimitive2D
— TransparencePrimitive2D
— MaskPrimitive2D
- ModifiedColorPrimitive2D

> For processing, this is the set to be supported

- Some processors even use less (geometry extractors)

— For better performance, support more (e.g. fat line, simple
transparence)



cig®

DrawinglLayer Primitive
Requirements:
Self-contained (Data, References)
Read-Only (just get...() methods)
Separate Graphics into Definition and Processing
getDecomposition for non-Generic Primitives required
Support for buffering decompositions
Support for View-Dependent decompositions
Support for getRange uses decomposition

GroupPrimitive2D derivates can anytime be used to
encapsulate specific information, does no harm



cig®

DrawinglLayer Primitive
Implementation:
Basic Primitives are in drawinglayer project
More are implemented wherever needed (60-807)

As long as decomposition creation is supported, the
Primitive will be processed/rendered

GetRange() may even be moved to an own Processor
Operator== in implementation may be removed (aw080)
Primitives need to be self-contained

Primitives may be very '‘complex’' (whole SdrObject...?)

Implementation supports unique ID for switch Statements



cig®

DrawinglLayer Primitive
3D:

> In parallell, primitive definitions exist for 3D

> XPrimitive3D UNO API and implementation

= Generic 3D Primitives are:
* PolygonHairlinePrimitive3D

* PolyPolygonMaterialPrimitive3D

= Group 3D Primitives are:
* TransformPrimitive3D

* TexturePrimitive3D (Gradient, Transparence, Bitmap, Hatch)

> Implementation of 3D Scene is itself a 2D Primitive,
decomposing to a Bitmap (except shadow, uses a processor)



. " 0
DrawingLayer Primitive CiB

Examples:

> @Generic Primitives:
— AnimatedPrimitive
— CropPrimitive
—  GridPrimitive
— UnifiedTransparencePrimitive
- TextDecoratedPrimitive
- Metafileprimitive
> Group Primitives:
- HiddenGeometryPrimitive

— InvertPrimitive

— ShadowPrimitive



cig®

DrawinglLayer Processor

Definition:

> Not (yet) based on UNO API, BaseProcessor2D/3D

- Unified processing of a sequence of Primitives
* Contains needed ViewInformation
* Single call 'process(Primitives)’

— Detects if Primitive instances are own implementation. If not,
get decomposition using UNO API and call recursively

- Implementations fetch unique ID from Prinitive and use one
switch..case Block

- Generic Primitives need to be implemented and rendered

- Group primitives are partially generic supported

* TransformPrimitive2D creates updated
ViewTransformation, calls recursively with children



cig®

DrawinglLayer Processor

Implementation:

> Basic Processors for 2D

— VclProcessor for Pixel-Target (VCL OutputDevice)
— MetafileProcessor (VCL Metafile, Print, PDF export, ...)

> Basic Processor for 3D (soft-renderer, AAed, ...)

> Todo: Generic, system-specific Renderers
— For 2D Pixel-Target, could greatly increase Speed
- For 3D Target
- For Exports: PDF, SVG, ...



cig®

DrawinglLayer Processor
Examples:

> Not only rendering — lot of other processing:
— ContourExtractor
— HitTestProcessor
— LineGeometryExtractor

- TextAsPolygonExtractor
> UNO API.

— The decomposition implementation of UNO API incarnations
of Primitives is used

— There is the interface XPrimitive2DRenderer to convert any
sequence of Primitives to Bitmap format



cig®

How to create a new Primitive
From Generic Primitive;

> Minimal Steps:
- Derive from
* BasePrimitive2D

* Implement decomposition

- Use it (Incarnate, add to sequence, ...)

> From that moment on, Your Geometry will be handled
correctly throughout the Office. Screen visualization,
Print, PDF Export, SVG export, ...



cig®

How to create a new Primitive
From Generic Primitive;

> Optional:

— Derive from BufferedDecompositionPrimitive2D (optional use
DiscreteMetricDependentPrimitive2D ViewportDependentPrimitive2D

ViewTransformationDependentPrimitive2D)

- React eventually View-Dependent inside decomposition
- Implement operator==
- Implement getB2DRange

— Add to Processors of your choice when you want/need
special handling in that Rendererer



cig®

How to create a new Primitive
From Group Primitive:

> Data embedding:

— Derive from Group Primitive, add your Data, embed all other
Primitives as children

- Add to the Processor where you need (and know) it, use it
there

- Every other Processor will ignore it, using children as
decomposition

> Using existing sequence of Primitives:

- Get it's current Range, create needed Transformation, embed
to new TransformPrimitive2D

- Embed to MaskPrimitive2D with new clipping PolyPolygon
- Embed to ModifiedColorPrimitive2D to force e.g. to all-Black



Future

> Make even more Generic:

Aw080: operator== removed

UNO API: provide/implement for the basic Primitives to allow
using them from other languages

Reduce number of basic Primitives further (All Bitmaps...?)

Remove getRange(), replace with dedicated Processor

> Use more:

Migrate more parts of the Office to use Primitives

EditViews, EditEngine, ...

> Get faster:

— Create system-specific Renderers for 2D/3D/all Systems

cig®



Future

> Add Support for nicer Gradients
- What about a SVGGradientPrimitive...?

> Add Support for Graphic Im/Exporters

- SVG import already uses it

— SVG export, PDF export could profit (quality, precision)

- Most known Metafiles, would increase quality and Clipboard
> No-Go's:

— Do not add a GraphicFormat to save/load Primitives, this
would freeze current definitions. That was the beginning of
all Problems with Metafiles...

cig®



cig®

Examples

> Enough Text, Let the Office talk...



cig®
Thank You for watching!

> To not Forget:

Your Help 1s
Needed to drive
this forward!




	CIB Group
	Folie 2
	Folie 3
	Folie 4
	Folie 5
	Folie 6
	Folie 7
	Folie 8
	Folie 9
	Folie 10
	Folie 11
	Folie 12
	Folie 13
	Folie 14
	Folie 15
	Folie 16
	Folie 17
	Folie 18
	Folie 19
	Folie 20
	Folie 21
	Folie 22
	Folie 23

