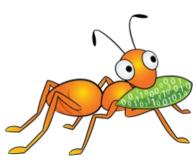
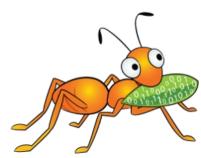
Gluster roadmap: Recent improvements and upcoming features

Niels de Vos GlusterFS co-maintainer

ndevos@redhat.com


Agenda

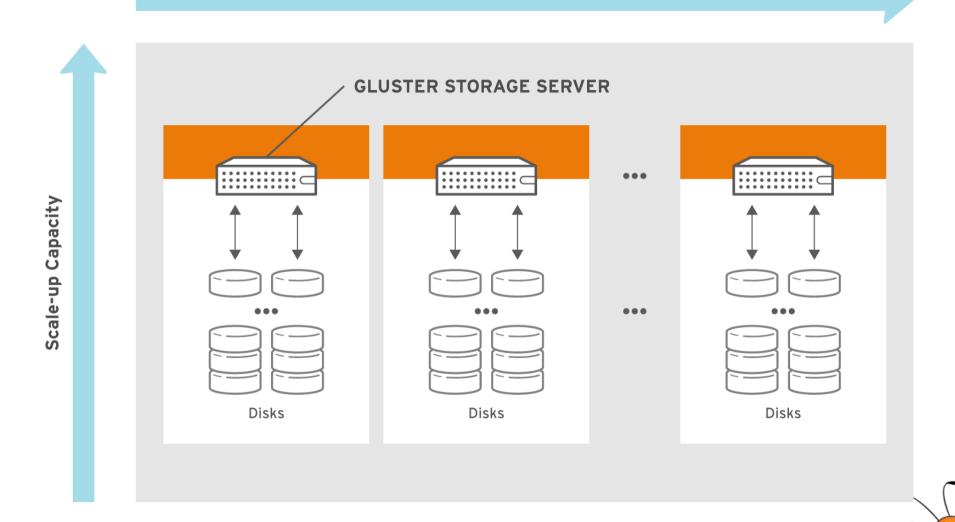
- Introduction into Gluster
- Quick Start
- Current stable releases
- History of feature additions
- Plans for the upcoming 3.8 and 4.0 release
- Detailed description of a few select features


What is GlusterFS?

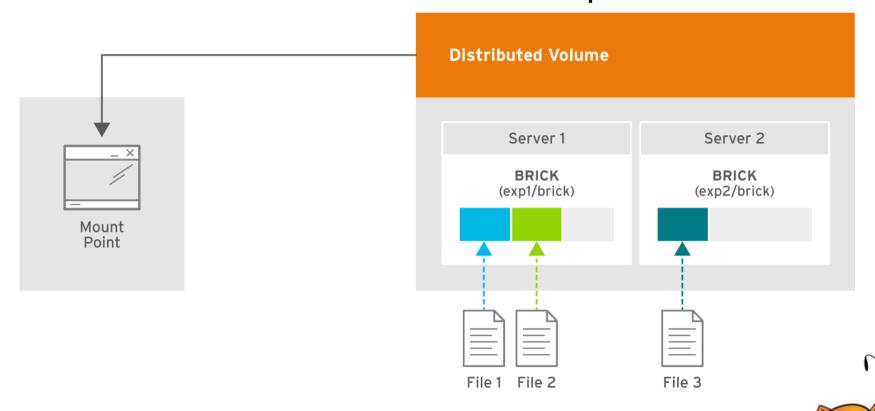
- Scalable, general-purpose storage platform
 - POSIX-y Distributed File System
 - Object storage (swift)
 - Distributed block storage (qemu)
 - Flexible storage (libgfapi)
- No Metadata Server
- Heterogeneous Commodity Hardware
- Flexible and Agile Scaling
 - Capacity Petabytes and beyond
 - Performance Thousands of Clients


Terminology

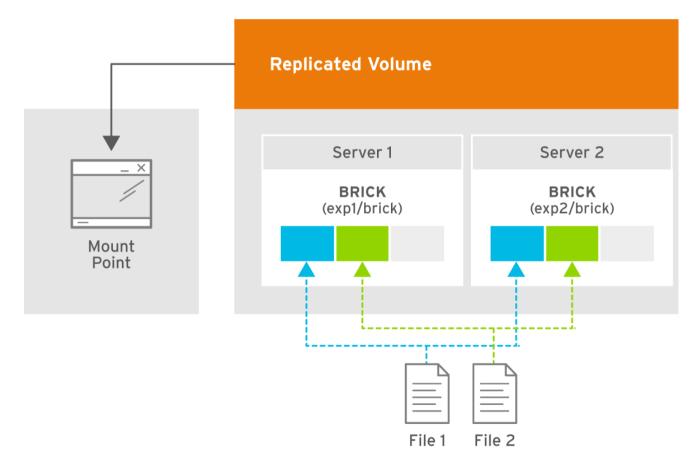
- Brick
 - Fundamentally, a filesystem mountpoint
 - A unit of storage used as a capacity building block
- Translator
 - Logic between the file bits and the Global Namespace
 - Layered to provide GlusterFS functionality

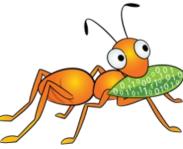

Terminology

- Volume
 - Bricks combined and passed through translators
 - Ultimately, what's presented to the end user
- Peer / Node
 - Server hosting the brick filesystems
 - Runs the Gluster daemons and participates in volumes
- Trusted Storage Pool
 - A group of peers, like a "Gluster cluster"

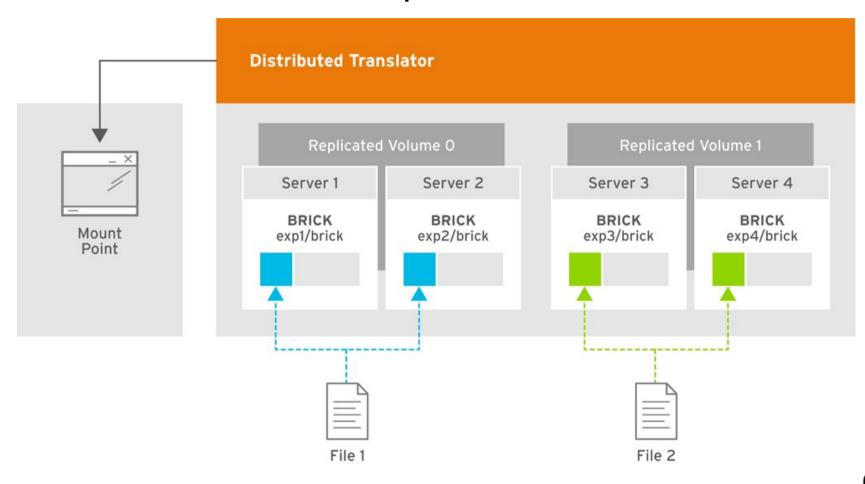

Scale-out and Scale-up

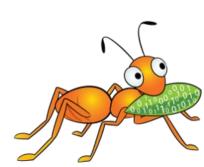
Scale-out performance, capacity and availability


Distributed Volume


- Files "evenly" spread across bricks
- Similar to file-level RAID 0
- Server/Disk failure could be catastrophic

Replicated Volume


- Copies files to multiple bricks
- Similar to file-level RAID 1


Distributed Replicated Volume

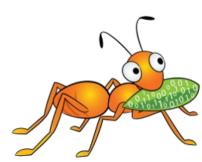
Distributes files across replicated bricks

Data Access Overview

- GlusterFS Native Client
 - Filesystem in Userspace (FUSE)
- NFS
 - Built-in Service, NFS-Ganesha with libgfapi
- SMB/CIFS
 - Samba server required (libgfapi based module)
- Gluster For OpenStack (Swift-on-file)
 - Object-based access via Swift
- libgfapi flexible abstracted storage
 - Integrated with QEMU, Bareos and others

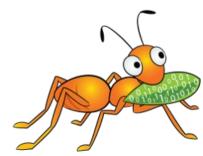
Quick Start

- Available in Fedora, Debian, NetBSD and others
- CentOS Storage SIG packages and add-ons
- Community packages in multiple versions for different distributions on http://download.gluster.org/
- Quick Start guides on http://gluster.org and CentOS wiki

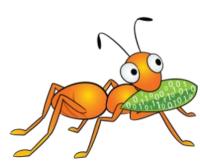


Quick Start

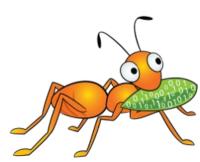
- 1.Install the packages (on all storage servers)
- 2. Start the GlusterD service (on all storage servers)
- 3. Peer probe other storage servers


- 4. Create and mount a filesystem to host a brick
- 5.Create a volume
- 6.Start the new volume

7. Mount the volume


Current Stable Releases

- Maintenance of three minor releases
 - 3.7, 3.6 and 3.5
- Bugfixes only, non-intrusive features on high demand
- Approximate release schedule:
 - 3.5 at the 10th of each month
 - 3.6 at the 20th of each month
 - 3.7 at the 30th of each month
- Patches get backported to fix reported bugs


Features included in version 3.5

- File Snapshot for qcow2 files
- GFID access
- On-Wire (de)compression
- Quota Scalability
- Readdir ahead
- Zerofill
- Brick Failure Detection
- Parallel geo-replication

Features included in version 3.6

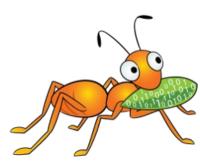
- Improved SSL support
- Heterogeneous bricks
- Volume wide locks for GlusterD
- Volume Snapshots
- User Serviceable Snapshots
- AFR refactor
- RDMA improvements
- Disperse translator for Erasure Coding



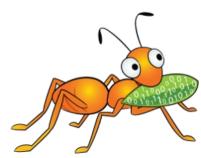
Features included in version 3.7

- Small-file performance enhancements
- Tiering for hot and cold contents
- Trash translator making undelete of files possible
- Netgroups and advanced exports configuration (NFS)
- BitRot detection
- Upcall infrastructure to notify client processes
- Support for NFS Ganesha clusters
- Arbiter volumes for 3-way replica, with only 2x the data
- Sharding to improve performance for VM images

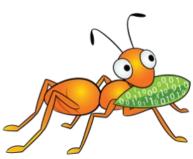
BitRot support in 3.7


- Lazy checksum calculation after file close
- BitD daemon utilizes the changelog API
- Detection options for rotten data:
 - Upon open() and read() (disabled by default)
 - Periodic scan
- Detection only, manual repair needed

Sharding in 3.7


Split files into shards that get distributed by DHT

- Smaller shards help to
 - decrease time when healing is needed
 - make geo-replication faster
- More even distribution over bricks improve
 - utilization of space
 - client distribution, and performance
- Allows single files to be bigger than the bricks


NFS-Ganesha support in 3.7

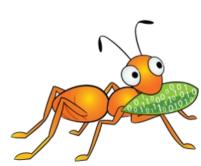
- Optionally replaces Gluster/NFS
- Supports NFSv4 with Kerberos
- Modifications to Gluster internals
 - Upcall infrastructure
 - Gluster CLI to manage NFS Genesha
 - libgfapi improvements
- High-Availability based on Pacemaker and Corosync

Plans for the next 3.8 release

- Scale out/in support with Tiering
- REST Management APIs for Gluster
- Manageable by Heketi
 - Easier integration in OpenStack, Kubernetes, ...
- Subdirectory mounting for the FUSE client
- Converged High-Availability
 - Pacemaker managed NFS-Ganesha and Samba
- Quota for users/groups
- SEEK_DATA/SEEK_HOLE for sparse files

... more plans for the next 3.8 release

- Geo replication improvements
 - Tiering aware
 - Sharding support
- Multi-threaded self heal
- Throttling of clients doing excessive I/O
- inotify like functionality
- Kerberos for the Gluster protocols
- ... and much more



Preparations for multi-protocol support

Simultaneous access of files through SMB, NFS and FUSE protocols:

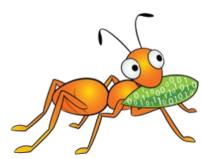
- RichACL support
- Coherent client-side caching
 - Leases for SMB
 - Delegations for NFSv4
 - Layout recall for pNFS
- Mandatory lock support

• . . .

Plans for the next 4.0 release

- Scalability and manageability improvements
 - New Style Replication
 - Improved Distributed Hashing Translator
 - GlusterD 2.0 aims to manage 1000 storage servers
- Composite operations in the GlusterFS RPC protocol
- Eventing framework for monitoring
- ... and much more

DHTv2 design


- Improve scalability, reduce performance impact
 - DHTv1 places all directories on all bricks
- Separate data and metadata in their own subvolumes
- Handle files and directories the same way
- Different on-disk layout, upgrades not possible/planned

New Style Replication

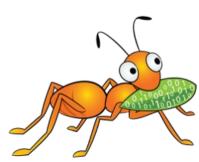
- Server-side replication
- Full data journal, can be placed on SSD
- More throughput for many workloads
- More precise, faster repair and healing
- Timebased journals provides the ability to implement snapshots of files

NSR would like a new name, suggestions welcome!

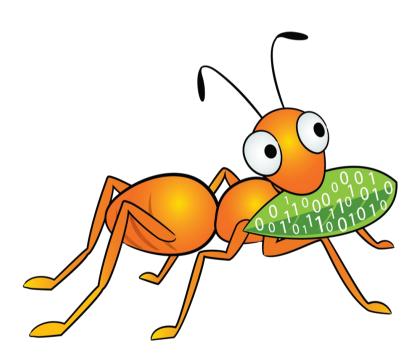
Resources

```
Mailing lists:
gluster-users@gluster.org
gluster-devel@gluster.org
```

IRC:


#gluster and #gluster-dev on Freenode

Links:


http://gluster.org/

http://gluster.readthedocs.org/

https://github.com/gluster/

Thank you!

Niels de Vos ndevos@redhat.com ndevos on IRC