
Huge Codebases – Application Monitoring with Hystrix 1

Huge Codebases
Application Monitoring with Hystrix

30 Jan. 2016

Roman Mohr
Red Hat

FOSDEM 2016

Huge Codebases – Application Monitoring with Hystrix 2

About Me

Roman Mohr

Software Engineer at Red Hat

Member of the SLA team in oVirt

Mail: rmohr@redhat.com

Github: https://github.com/rmohr

IRC: #ovirt irc.oftc.net

mailto:rmohr@redhat.com
https://github.com/rmohr

Huge Codebases – Application Monitoring with Hystrix 3

oVirt

“oVirt is a powerful virtual machine manager for
up to datacenter-class deployments, and provides
an awesome KVM management interface for
multi-node virtualization.” – http://www.ovirt.org

http://www.ovirt.org/

Huge Codebases – Application Monitoring with Hystrix 4

oVirt Artitecture

ovirt-engine

Host 1

Host 2

Host n

VMs

VMs

VMs

...

Storage

Huge Codebases – Application Monitoring with Hystrix 5

ovirt-engine
The Beast

Take 1

Huge Codebases – Application Monitoring with Hystrix 6

Architecture of ovirt-engine

DB

REST GWT

Commands

DAL

VDSM

Broker

Huge Codebases – Application Monitoring with Hystrix 7

Git Statistics of ovirt-engine

Branch: master

Generated: 2016-01-14 14:02:53 (in 370 seconds)

Generator: GitStats (version 2014-12-09), git version 2.4.3,
gnuplot 5.0 patchlevel 0

Report Period: 2011-10-04 18:43:09 to 2025-03-31 23:18:53

Age: 4928 days, 1449 active days (29.40%)

Total Files: 10355

Total Lines of Code: 1123168 (2557376 added, 1434208
removed)

Total Commits: 20166 (average 13.9 commits per active day)

Authors: 174 (average 115.9 commits per author)

Huge Codebases – Application Monitoring with Hystrix 8

Issues we have

● Many developers

● A lot of code

● No second level cache

● REST performance problems

● The product runs at the user/customer site

● Test coverage

● Hard to configure and run the application

Huge Codebases – Application Monitoring with Hystrix 9

Where to start?

● Try to get a high level overview of the architecture

● “Data-mine your Source Control” – Greg Young*

● Gather code metrics (JArchitect, Sonar)

● Monitor your application before you change something

* How to get productive in a project in 24h

 https://www.youtube.com/watch?v=KaLROwp-VDY

https://www.youtube.com/watch?v=KaLROwp-VDY

JBug, Jan 2016 10

Java and
Application Monitoring

Huge Codebases – Application Monitoring with Hystrix 11

Profiler?

● You can see where your application spends its time

● Easy to get started. Just connect to the JVM in
question and browse the CPU profiling graph.

● Some profilers even support JDBC, JPA, …

But:

● In general no application logic specific insights

● Many are closed source

● Not easy to collect data

Huge Codebases – Application Monitoring with Hystrix 12

XRebel for Monitoring?

● Easy to integrate. Just start an additional Java agent

● Every HTTP servlet now contains an additional popup
where you can access application metrics.

But:

● Closed source

● Development only

Huge Codebases – Application Monitoring with Hystrix 13

NewRelic for Monitoring?

● Excellent visualization

● Supports multi-host applications

● Knows a lot about Java

Examples:

● Closed source

● Production only

● License based business model

Huge Codebases – Application Monitoring with Hystrix 14

Hystrix

“Hystrix is a latency and fault tolerance library
designed to isolate points of access to remote
systems, services and 3rd party libraries, stop

cascading failure and enable resilience in
complex distributed systems where failure is

inevitable.” – https://github.com/Netflix/Hystrix

https://github.com/Netflix/Hystrix

Huge Codebases – Application Monitoring with Hystrix 15

Hystrix

Hystrix also provides metrics!

Huge Codebases – Application Monitoring with Hystrix 16

Hystrix Dashboard

Huge Codebases – Application Monitoring with Hystrix 17

Hystrix Dashboard

Error
percentage

Requests/s

Circuit breaker
status

Statistics

Request
shape

Huge Codebases – Application Monitoring with Hystrix 18

Hystrix Dashboard

Successful
Rejected (Short circuit)

Timeouts (thread isolation)

Rejected (max. concurrent invocations)

Failed executions (exception)Bad request (exception)

Huge Codebases – Application Monitoring with Hystrix 19

Hystrix Dashboard

Easy to run

Easy to integrate

● Drop the WAR from maven central in your container

● Add the WAR as dependency and serve the resources folder on an
endpoint.

● Add the hystrix-metrics-event-stream servlet to your application

$ git clone https://github.com/Netflix/Hystrix.git
$ cd Hystrix/hystrix-dashboard
$../gradlew jettyRun
> Running at http://localhost:7979/hystrix-dashboard

Huge Codebases – Application Monitoring with Hystrix 20

Hello World Hystrix Command

Setter setter = Setter.withGroupKey(
 HystrixCommandGroupKey.Factory.asKey("helloWorld")
).andCommandKey(
 HystrixCommandKey.Factory.asKey("helloWorld")
);

HystrixCommand<String> helloWorldCommand =
new HystrixCommand<String>(setter) {
 @Override protected String run() throws Exception {
 return "Hello world!";
 }
};

return helloWorldCommand.execute();

JBug, Jan 2016 21

ovirt-engine
The Problem

Take 2

Huge Codebases – Application Monitoring with Hystrix 22

Problem description

● We have a datacenter with 1000 VMs.

● We query the /api/vms endpoint which returns all VMs.

● We need 2.5 seconds to fetch them with no additional
load.

● We have a datacenter with 2000 VMs.

● We query the /api/vms endpoint which returns all VMs.

● We need 5 seconds to fetch them with no additional
load.

Huge Codebases – Application Monitoring with Hystrix 23

Solution: Let's curl a little bit

$> time bash rest.sh vms > /dev/null
 % Total % Received % Xferd Average Speed Time Time Time Current
 Dload Upload Total Spent Left Speed
100 7043k 0 7043k 0 0 2774k 0 --:--:-- 0:00:02 --:--:-- 2775k

real 0m2.547s
user0m0.008s
sys 0m0.011s

$> time bash rest.sh vms > /dev/null
 % Total % Received % Xferd Average Speed Time Time Time Current
 Dload Upload Total Spent Left Speed
100 13.7M 0 13.7M 0 0 2876k 0 --:--:-- 0:00:04 --:--:-- 3815k

real 0m4.900s
user0m0.009s
sys 0m0.014s

1000 VMs, 1 request

2000 VMs, 1 request

Huge Codebases – Application Monitoring with Hystrix 24

Solution: Let's curl a little bit

2000 VMs, 10 parallel requests

$> time seq 1 10 | parallel -j 10 bash rest.sh vms > /dev/null

 % Total % Received % Xferd Average Speed Time Time Time Current
 Dload Upload Total Spent Left Speed
100 13.7M 0 13.7M 0 0 488k 0 --:--:-- 0:00:28 --:--:-- 3911k
[...]
100 13.7M 0 13.7M 0 0 487k 0 --:--:-- 0:00:28 --:--:-- 3848k

real 0m29.590s
user0m0.212s
sys 0m0.438s

Huge Codebases – Application Monitoring with Hystrix 25

Solution: We can guess

● “That's because our database is so slow.”

● “The database can cache everything, it is because our
REST application code is so slow.”

● “That's because we are keeping the database busy
with status updates of Hosts and VMs.”

● “That's because our architecture is not smart enough, it
is just an ordinary monolith. That must be solved with
streaming and eventbuses.”

Huge Codebases – Application Monitoring with Hystrix 26

Solution: Let's curl a little bit more

Let us execute the following scenario:

100 Vms, 10 parallel requests, 100 requests total

$> seq 1 100 | parallel -j 10 bash rest.sh vms > /dev/null

Huge Codebases – Application Monitoring with Hystrix 27

Find the Error

Huge Codebases – Application Monitoring with Hystrix 28

Find the Error

Huge Codebases – Application Monitoring with Hystrix 29

With the Fix

$> time bash rest.sh vms > /dev/null
 % Total % Received % Xferd Average Speed Time Time Time Current
 Dload Upload Total Spent Left Speed
100 13.7M 0 13.7M 0 0 7210k 0 --:--:-- 0:00:01 --:--:-- 7210k

real 0m2.218s
user 0m0.079s
sys 0m0.062s

2000 VMs, 1 request

$> time bash rest.sh vms > /dev/null
 % Total % Received % Xferd Average Speed Time Time Time Current
 Dload Upload Total Spent Left Speed
100 7051k 0 7051k 0 0 8521k 0 --:--:-- --:--:-- --:--:-- 8516k

real 0m1.008s
user0m0.091s
sys 0m0.042s

1000 VMs, 1 request

Huge Codebases – Application Monitoring with Hystrix 30

With the Fix

2000 VMs, 10 parallel requests

time seq 1 10 | parallel -j 10 bash rest.sh vms > /dev/null

 % Total % Received % Xferd Average Speed Time Time Time Current
 Dload Upload Total Spent Left Speed
100 13.7M 0 13.7M 0 0 1473k 0 --:--:-- 0:00:09 --:--:-- 3249k
[...]
100 13.7M 0 13.7M 0 0 1534k 0 --:--:-- 0:00:09 --:--:-- 3566k

real 0m10.228s
user0m0.211s
sys 0m0.436s

Much better but still too slow. We will see later how to avoid
being overwhelmed by too much expensive calls.

Huge Codebases – Application Monitoring with Hystrix 31

With the Fix

Huge Codebases – Application Monitoring with Hystrix 32

Collect data from user systems

$> curl -H "Accept: application/json"
 -H "Content-type: application/json" -X GET
 --user admin@internal:engine
 http://localhost:8080/ovirt-engine/services/hystrix.stream

ping:

data: {"type":"HystrixCommand","name":"GetVmsInit","group":"GetVmsInit", [...] }
data: {"type":"HystrixCommand","name":"VdsHostDevListByCaps", [...] }

Collect as much streaming data as you want:

Import it later in your favourite analysis tool or send the data
directly to it by using Hystrix plugins.

Huge Codebases – Application Monitoring with Hystrix 33

Archaius: config.properties

hystrix.command.SearchVM.execution.isolation.semaphore.maxConcurrentRequests=10

This will override the default configuration of the SearchVM command:

Default Value 10

Default Property hystrix.command.default.execution.isolation.semaphore
 .maxConcurrentRequests

Instance Property hystrix.command.HystrixCommandKey.execution.isolation
 .semaphore.maxConcurrentRequests

How to Set Instance
Default

HystrixCommandProperties.Setter()
 .withExecutionIsolationSemaphoreMaxConcurrentRequests(int value)

How to limit concurrent invocations of a command protected by Hystrix:

Just add it to your config.properties file or set it as system property.

Huge Codebases – Application Monitoring with Hystrix 34

Protected VMs Endpoint

Huge Codebases – Application Monitoring with Hystrix 35

Great OSS Monitoring Ecosystem

● Hystrix

● Servo

● Dropwizard Metrics

● Cockpit

● Thermostat

● Grafana, Graphite

● Hawkular

● Prometheus

● ...

Huge Codebases – Application Monitoring with Hystrix 36

Conclusion

● Hystrix provides an easy way to monitor and protect
your monolith or your microservices

● An interesting open source ecosystem around
monitoring exists

● From some closed source projects we can learn a lot
about usability

Huge Codebases – Application Monitoring with Hystrix 37

Questions?

Huge Codebases – Application Monitoring with Hystrix 38

Mail: rmohr@redhat.com

Github: https://github.com/rmohr

IRC: #ovirt irc.oftc.net

Thank you!

mailto:rmohr@redhat.com
https://github.com/rmohr

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38

