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About Me

Roman Mohr

Software Engineer at Red Hat

Member of the SLA team in oVirt

Mail: rmohr@redhat.com

Github: https://github.com/rmohr

IRC: #ovirt irc.oftc.net

mailto:rmohr@redhat.com
https://github.com/rmohr
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oVirt

“oVirt is a powerful virtual machine manager for 
up to datacenter-class deployments, and provides 
an awesome KVM management interface for 
multi-node virtualization.” – http://www.ovirt.org

http://www.ovirt.org/


Huge Codebases – Application Monitoring with Hystrix 4

oVirt Artitecture
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ovirt-engine
The Beast

Take 1
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Architecture of ovirt-engine

DB

REST GWT

Commands

DAL

VDSM

Broker
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Git Statistics of ovirt-engine

Branch: master

Generated: 2016-01-14 14:02:53 (in 370 seconds)

Generator: GitStats (version 2014-12-09), git version 2.4.3, 
gnuplot 5.0 patchlevel 0

Report Period: 2011-10-04 18:43:09 to 2025-03-31 23:18:53

Age: 4928 days, 1449 active days (29.40%)

Total Files: 10355

Total Lines of Code: 1123168 (2557376 added, 1434208 
removed)

Total Commits: 20166 (average 13.9 commits per active day)

Authors: 174 (average 115.9 commits per author)
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Issues we have

● Many developers

● A lot of code

● No second level cache

● REST performance problems

● The product runs at the user/customer site

● Test coverage

● Hard to configure and run the application
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Where to start?

● Try to get a high level overview of the architecture

● “Data-mine your Source Control” – Greg Young*

● Gather code metrics (JArchitect, Sonar)

● Monitor your application before you change something

* How to get productive in a project in 24h 

  https://www.youtube.com/watch?v=KaLROwp-VDY

https://www.youtube.com/watch?v=KaLROwp-VDY
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Java and 
Application Monitoring
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Profiler?

● You can see where your application spends its time

● Easy to get started. Just connect to the JVM in 
question and browse the CPU profiling graph.

● Some profilers even support JDBC, JPA, …

But:

● In general no application logic specific insights

● Many are closed source

● Not easy to collect data
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XRebel for Monitoring?

● Easy to integrate. Just start an additional Java agent

● Every HTTP servlet now contains an additional popup 
where you can access application metrics.

But:

● Closed source

● Development only
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NewRelic for Monitoring?

● Excellent visualization

● Supports multi-host applications

● Knows a lot about Java

Examples:

● Closed source

● Production only

● License based business model
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Hystrix

“Hystrix is a latency and fault tolerance library 
designed to isolate points of access to remote 
systems, services and 3rd party libraries, stop 

cascading failure and enable resilience in 
complex distributed systems where failure is 

inevitable.” – https://github.com/Netflix/Hystrix

https://github.com/Netflix/Hystrix
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Hystrix

Hystrix also provides metrics!
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Hystrix Dashboard
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Hystrix Dashboard

Error 
percentage

Requests/s

Circuit breaker 
status

Statistics

Request 
shape
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Hystrix Dashboard

Successful
Rejected (Short circuit) 

Timeouts (thread isolation)

Rejected (max. concurrent invocations)

Failed executions (exception)Bad request (exception) 
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Hystrix Dashboard

Easy to run

Easy to integrate

● Drop the WAR from maven central in your container

● Add the WAR as dependency and serve the resources folder on an 
endpoint.

● Add the hystrix-metrics-event-stream servlet to your application

$ git clone https://github.com/Netflix/Hystrix.git
$ cd Hystrix/hystrix-dashboard
$ ../gradlew jettyRun
> Running at http://localhost:7979/hystrix-dashboard
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Hello World Hystrix Command

Setter setter = Setter.withGroupKey(
        HystrixCommandGroupKey.Factory.asKey("helloWorld")
).andCommandKey(
        HystrixCommandKey.Factory.asKey("helloWorld")
);

HystrixCommand<String> helloWorldCommand = 
new HystrixCommand<String>(setter) {
    @Override protected String run() throws Exception {
        return "Hello world!";
    }
};

return helloWorldCommand.execute();
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ovirt-engine
The Problem

Take 2
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Problem description

● We have a datacenter with 1000 VMs.

● We query the /api/vms endpoint which returns all VMs.

● We need 2.5 seconds to fetch them with no additional 
load.

● We have a datacenter with 2000 VMs.

● We query the /api/vms endpoint which returns all VMs.

● We need 5 seconds to fetch them with no additional 
load.
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Solution: Let's curl a little bit

$> time bash rest.sh vms > /dev/null
  % Total    % Received % Xferd  Average Speed   Time    Time     Time  Current
                                 Dload  Upload   Total   Spent    Left  Speed
100 7043k    0 7043k    0     0  2774k      0 --:--:--  0:00:02 --:--:-- 2775k

real 0m2.547s
user0m0.008s
sys 0m0.011s

$> time bash rest.sh vms > /dev/null
  % Total    % Received % Xferd  Average Speed   Time    Time     Time  Current
                                 Dload  Upload   Total   Spent    Left  Speed
100 13.7M    0 13.7M    0     0  2876k      0 --:--:--  0:00:04 --:--:-- 3815k

real 0m4.900s
user0m0.009s
sys 0m0.014s

1000 VMs, 1 request

2000 VMs, 1 request
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Solution: Let's curl a little bit

2000 VMs, 10 parallel requests

$> time seq 1 10 | parallel -j 10 bash rest.sh vms > /dev/null

  % Total    % Received % Xferd  Average Speed   Time    Time     Time  Current
                                 Dload  Upload   Total   Spent    Left  Speed
100 13.7M    0 13.7M    0     0   488k      0 --:--:--  0:00:28 --:--:-- 3911k
[...]
100 13.7M    0 13.7M    0     0   487k      0 --:--:--  0:00:28 --:--:-- 3848k

real 0m29.590s
user0m0.212s
sys 0m0.438s
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Solution: We can guess

● “That's because our database is so slow.”

● “The database can cache everything, it is because our 
REST application code is so slow.”

● “That's because we are keeping the database busy 
with status updates of Hosts and VMs.”

● “That's because our architecture is not smart enough, it 
is just an ordinary monolith. That must be solved with 
streaming and eventbuses.”
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Solution: Let's curl a little bit more

Let us execute the following scenario:

100 Vms, 10 parallel requests, 100 requests total 

$> seq 1 100 | parallel -j 10 bash rest.sh vms > /dev/null
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Find the Error
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Find the Error
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With the Fix

$> time bash rest.sh vms > /dev/null
  % Total    % Received % Xferd  Average Speed   Time    Time     Time  Current
                                 Dload  Upload   Total   Spent    Left  Speed
100 13.7M    0 13.7M    0     0  7210k      0 --:--:--  0:00:01 --:--:-- 7210k

real 0m2.218s
user 0m0.079s
sys 0m0.062s

2000 VMs, 1 request

$> time bash rest.sh vms > /dev/null
  % Total    % Received % Xferd  Average Speed   Time    Time     Time  Current
                                 Dload  Upload   Total   Spent    Left  Speed
100 7051k    0 7051k    0     0  8521k      0 --:--:-- --:--:-- --:--:-- 8516k

real 0m1.008s
user0m0.091s
sys 0m0.042s

1000 VMs, 1 request
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With the Fix

2000 VMs, 10 parallel requests

time seq 1 10 | parallel -j 10 bash rest.sh vms > /dev/null

  % Total    % Received % Xferd  Average Speed   Time    Time     Time  Current
                                 Dload  Upload   Total   Spent    Left  Speed
100 13.7M    0 13.7M    0     0  1473k      0 --:--:--  0:00:09 --:--:-- 3249k
[...]
100 13.7M    0 13.7M    0     0  1534k      0 --:--:--  0:00:09 --:--:-- 3566k

real 0m10.228s
user0m0.211s
sys 0m0.436s

Much better but still too slow. We will see later how to avoid 
being overwhelmed by too much expensive calls.
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With the Fix
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Collect data from user systems

$> curl -H "Accept: application/json" 
        -H "Content-type: application/json" -X GET
        --user admin@internal:engine 
        http://localhost:8080/ovirt-engine/services/hystrix.stream

ping: 

data: {"type":"HystrixCommand","name":"GetVmsInit","group":"GetVmsInit", [...] }
data: {"type":"HystrixCommand","name":"VdsHostDevListByCaps", [...] }

Collect as much streaming data as you want:

Import it later in your favourite analysis tool or send the data 
directly to it by using Hystrix plugins.
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Archaius: config.properties

hystrix.command.SearchVM.execution.isolation.semaphore.maxConcurrentRequests=10

This will override the default configuration of the SearchVM command:

Default Value 10

Default Property hystrix.command.default.execution.isolation.semaphore
  .maxConcurrentRequests

Instance Property hystrix.command.HystrixCommandKey.execution.isolation
  .semaphore.maxConcurrentRequests

How to Set Instance 
Default

HystrixCommandProperties.Setter()
   .withExecutionIsolationSemaphoreMaxConcurrentRequests(int value)

How to limit concurrent invocations of a command protected by Hystrix:

Just add it to your config.properties file or set it as system property.



Huge Codebases – Application Monitoring with Hystrix 34

Protected VMs Endpoint
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Great OSS Monitoring Ecosystem

● Hystrix

● Servo

● Dropwizard Metrics

● Cockpit

● Thermostat

● Grafana, Graphite

● Hawkular

● Prometheus

● ...
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Conclusion

● Hystrix provides an easy way to monitor and protect 
your monolith or your microservices

● An interesting open source ecosystem around 
monitoring exists

● From some closed source projects we can learn a lot 
about usability
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Questions?
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Mail: rmohr@redhat.com

Github: https://github.com/rmohr

IRC: #ovirt irc.oftc.net

Thank you!

mailto:rmohr@redhat.com
https://github.com/rmohr
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