
1/15

Dominig ar Foll
Senior Software Architect

 Intel Open Source

FOSDEM 2016, Bruxelles, Be dominig.arfoll@fridu.net

2/15

Odds are against us

Developer
Fix all possible weaknesses
Deactivate possible users errors
LTS assumed for free

Back Hat
Only need one security hole
Can be help by careless users
Good long term business opportunities
Good international network

We cannot rely on “experts”

9M Mobile
developers

8M Web
developers

600k Embedded
Developers

20 to 50 Billion
Connected devices
By 2020

600k Embedded
Developers

Rare Embedded
Security experts

4/15

Back to the fundamentals
Minimise surface of attack
Control the code which is run
Provide a bullet proof update model
Track security patches in days rather than weeks
Use HW security helpers when available
Limit lateral movement in the system
Develop and QA with security turned on
Provide tools to Dev to enable secure development
Note that there is no miracle solution, it's will be hard work.

 Security cannot be added after the fact

5/15

Designed for Security

EPID
ID Management

EPID
ID Management

TPM
Private/Secure Store

TPM
Private/Secure Store

UEFI
Secured Boot

UEFI
Secured Boot

Linux Kernel with up-to-date patchesLinux Kernel with up-to-date patches

SoC Specific drivers

Harden OS servicesHarden OS services

Mandatory Access Control
Integrity
Name Space
Firewall
Safe update
Encryption
ID/Key protection

 API API

Untrusted Apps / MiddlewareUntrusted Apps / Middleware Full isolation

Signing
Repo create
Debug
Customize
SoC Drivers

Signing
Repo create
Debug
Customize
SoC Drivers

Default policies
Debug
Sample code
HowTo

Default policies
Debug
Sample code
HowTo

AppFW
App Debug
App Packaging

AppFW
App Debug
App Packaging

Tools-DocTools-Doc Software running onTargetSoftware running onTarget

6/15

Which code I run
Trusted boot UEFI is your friend
l Keys can be customised for small series
l API are well defined
l Supported on many HW.
Integrity
l Protects all critical files
l Optionally impose external signing
Update
l Only signed update
l Secured update on compromised device
l Factory reset built in
l Do not let back door open via containers
l Strict control on custom drivers

https://en.wikipedia.org/wiki/Unified_Extensible_Firmware_Interface
http://kroah.com/log/blog/2013/09/02/booting-a-self-signed-linux-kernel/
https://msdn.microsoft.com/en-us/library/windows/hardware/hh973604.aspx
http://sourceforge.net/p/linux-ima/wiki/Home/

https://en.wikipedia.org/wiki/Unified_Extensible_Firmware_Interface
http://kroah.com/log/blog/2013/09/02/booting-a-self-signed-linux-kernel/
https://msdn.microsoft.com/en-us/library/windows/hardware/hh973604.aspx

7/15

Know who/what you trust
Trust code
l Keys in initial boot loader
l Signing images
l Signing update
l Simplified development process
l EPID is your friend
Track your App
l Signing App developed externally
l Dedifferentiate platform, partner, external developers
Track App call in the system
l MAC for local Apps
l Oauth 2.0 / OpenID / SAML for remote App

https://en.wikipedia.org/wiki/OAuth

https://en.wikipedia.org/wiki/OAuth

8/15

Bullet proof update and ID
Update is the only possible correction
l Must run safely on compromised device
l Cannot assume a know starting point
Compromised ID / keys has no return
l Per device unique ID
l Per device symmetric keys
l Use HW ID protection (e.g. EPID)
Non reproducibility
l Breaking in one device cannot be extended
l Development I/O are disabled
l Root password is unique
l Password cannot be easily recalculated

OS
Middleware

Apps

Core
Update

ID
Keys

HW Boundary

9/15

Isolate services
Run services with UID<>0 SystemD is your friend
l Create dedicated UID per service
l Use MAC and DAC to minimise open Access
Drop privileges
l Posix privileges
l MAC privileges
C-goups
l Reduce offending power
l RAM/CPU/IO
Name Space
l Limit access to private data
l Limit access to connectivity

https://www.kernel.org/doc/Documentation/cgroups/cgroups.txt
https://www.kernel.org/pub/linux/libs/security/linux-privs/kernel-2.2/capfaq-0.2.txt
http://man7.org/linux/man-pages/man7/namespaces.7.html
https://en.wikipedia.org/wiki/Mandatory_access_control
https://en.wikipedia.org/wiki/Discretionary_access_control

https://www.kernel.org/doc/Documentation/cgroups/cgroups.txt
https://www.kernel.org/pub/linux/libs/security/linux-privs/kernel-2.2/capfaq-0.2.txt
http://man7.org/linux/man-pages/man7/namespaces.7.html
https://en.wikipedia.org/wiki/Mandatory_access_control

10/15

Isolate Apps
Apps use the OS, should not define it
l Apps cannot change the OS behaviour
l Apps privileges are limited
Containment at launch
l Drop capabilities
l Activate G-groups limitation
l Limit system access via name spaces
l Enforce a MAC unique App tracer
White list privileges
l If not explicitly allowed >stickly forbidden
l Enforcement

l Simpler with API and MAC combination
l Too complex via 100% MAC
l standard SE Linux policy >120kl
l Tizen 2.1 phone smack policy >30kl
l Poor performer via Seccomp

Only installed from trusted sources
https://www.kernel.org/doc/Documentation/prctl/seccomp_filter.txt
http://selinuxproject.org/page/NB_PolicyType
https://wiki.tizen.org/wiki/Security:SmackThreeDomainModel

Tizen 3 Model

https://www.kernel.org/doc/Documentation/prctl/seccomp_filter.txt
http://selinuxproject.org/page/NB_PolicyType

11/15

Container "A mixed blessing"
Easy to use
l Detach the App from the platform
l Integrated App management
l Well known
Not very secure
l Unreliable introspection
l MAC has no power on the inside of a container
l Updating the platform does not update the
l middleware
l Beside the Kernel each App provide its own version
l of the OS
l Each App restart requires a full passing of credential
l RAM and Flash footprint are uncontrollable
l Far more secured with Clear Container but not applicable to low end SoC.
Only I/O via network
l Well equipped for Rest API
l All other I/O requires driver level access or bespoke framework.

https://www.opencontainers.org/
https://lwn.net/Articles/644675/

https://www.opencontainers.org/

12/15

No relying on end user
End user as an IT manager – a No No

- App or Browser as UI
- Dead simple but secured
- Unified on various generation of devices
- Possible actions

* reboot/update
* return to the shop

Provider managed
- user still need to customise
- multiple EMS stacks (TR-069, M2M, …)
- devices behind NAT

13/15

Development process
Filter code in
l Code reviews
l Licence check
l Static analysis
l Silent Dependency
Auto test
l Compile/build test
l Automatic test
l Run test on secure image
Develop with Security on
l Provide Devel image with configurable security
l Enforce full respect of Service and App isolation
Do not accept any temporary "security disable"

https://www.opencontainers.org/

Questions

FOSDEM 2016, Bruxelles, Be dominig.arfoll@fridu.net

15/15

Security Check list
Control which code you run
l Secure boot
l Integrity
l Secure update
Isolate services
l Drop root when possible
l Drop privileges
Isolate Apps
l Apps are not the OS
l Enforce – restrict access to standard API
Identity
l Enforce identity unicity
l Use available HW protection
Encryption
l Network traffic
l Local storage

Control image creation
l No debug tool in production
l No default root password
l No unrequired open port
Continuous integration
l Automate static analysis
l QA on secured image
Help developer
l Integrate security in Devel image
l Provide clear guide line
l Isolate Apps from OS
l Focus on standardised Middleware

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Ostro Security
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15

