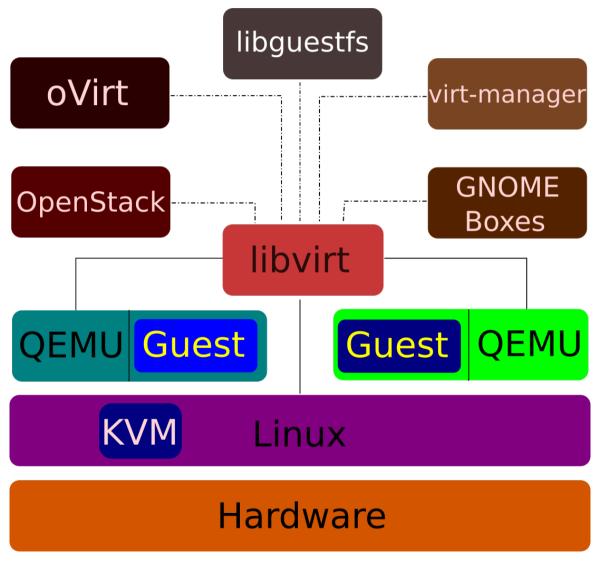

Live Migration of Virtual Machines From the Bottom Up



FOSDEM 2016

Amit Shah | Red Hat | amit.shah@redhat.com

Copyright 2016, Amit Shah Licensed under the Creative Commons Attribution-ShareAlike License, CC-BY-SA.

Virtualization Stack

QEMU

- Creates the machine
- Emulates devices
 - some mimic real devices
 - some are special: paravirtualized
- Entire guest is contained within QEMU
- Uses several services from host kernel
 - KVM for guest control
 - Linux for resources
- Runs unprivileged

KVM

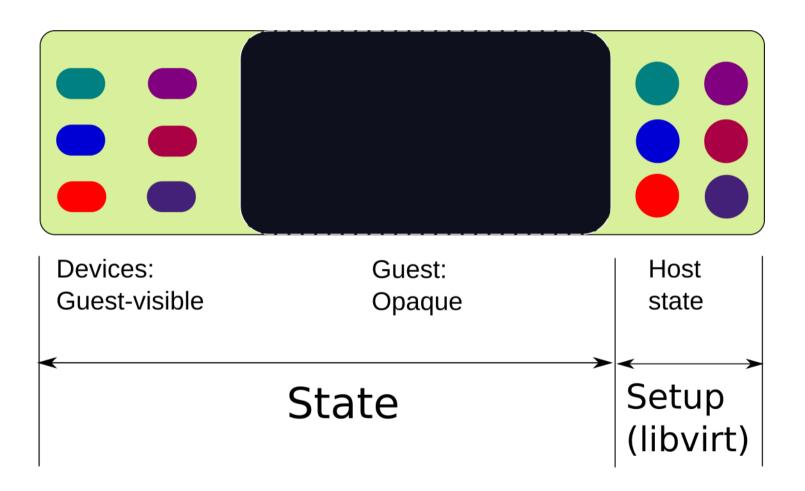
- Do one thing, do it right
- Linux kernel module
- Exposes hardware features for virtualization to userspace
- Emulates some devices
 - Like APIC
- Enables several features needed by QEMU
 - like keeping track of pages guest changes

libvirt

- Management of VMs, storage, network
- Provides a stable API
- Remote management
- virsh command-line interface
- cgroups
- sVirt
- Makes it possible for QEMU to run unprivileged
 - Opens files, connections and passes them on to QEMU

Note on higher layers

- OpenStack
 - Cloud or laaS management
- oVirt
 - Data centre management
- virt-manager / GNOME Boxes
 - PC management
- libguestfs
 - nifty tool to perform several operations on VM images


KVM Today

- Very good performance and scalability
 - Consistently tops SPECVirt results
- Default hypervisor for oVirt, OpenStack
- Out-of-box support in all distributions

Live Migration

- Pick guest state from one QEMU process and transfer it to another
 - while the guest is running
- The guest shouldn't realize the world is changing beneath its feet
 - in other words, the guest isn't involved in the process
 - might notice degraded performance, though
- Useful for load balancing, hardware / software maintenance, power saving, checkpointing, ...

QEMU Layout

KVM Today

- Very good performance and scalability
 - Consistently tops SPECVirt results
- Default hypervisor for oVirt, OpenStack
- Out-of-box support in all distributions

Workstations

Generic-office-desktop by averpix, https://openclipart.org/detail/127213/genericofficedesktophttps://openclipart.org/detail/127213/genericofficedesktop

- Main interaction with guests
- Migration is triggered by admins
- Don't need anything more fancy / heavyweight

Data Centres / Clouds

Server-1U by Rob Fenwitch, https://openclipart.org/detail/169833/server-1uhttps://openclipart.org/detail/169833/server-1u

- Main interaction with hosts
- Migration is triggered by policies, transparent to admins
- Policies optimise resource usage; host maintenance, etc.

Data Centres

App

Middleware

DB

OS

- Scale-up
- Traditional workloads
 - large databases

App

Middleware

DB

OS

- Many vCPUs
- Lots of RAM
- Critical data
- Shared storage

laaS / Clouds

Compute

Compute

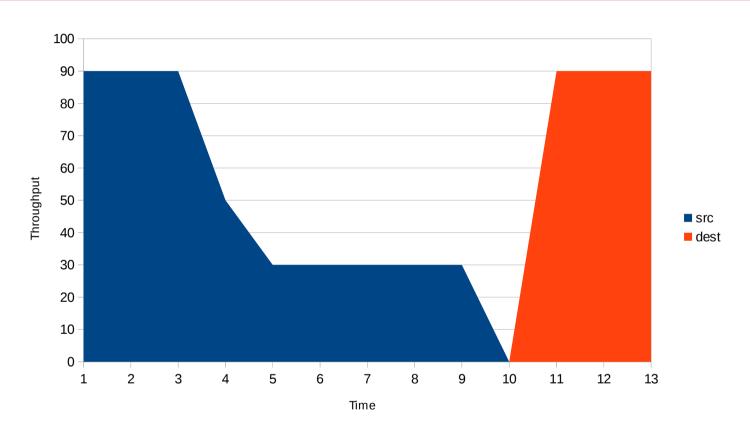
Compute

Compute

Storage

Storage

Storage


Storage

- Scale-out
- Custom applications
- Compute, storage separate
- Sometimes compute has storage
 - Needs block migration

Block Migration

- Using only QEMU
 - Take a snapshot of disk image
 - Migrate base disk image
 - Migrate RAM and new snapshot
 - Iterate till VM converges
- Using libvirt
 - Setup NBD connection between hosts
 - Transfer block device contents across hosts

Big VMs

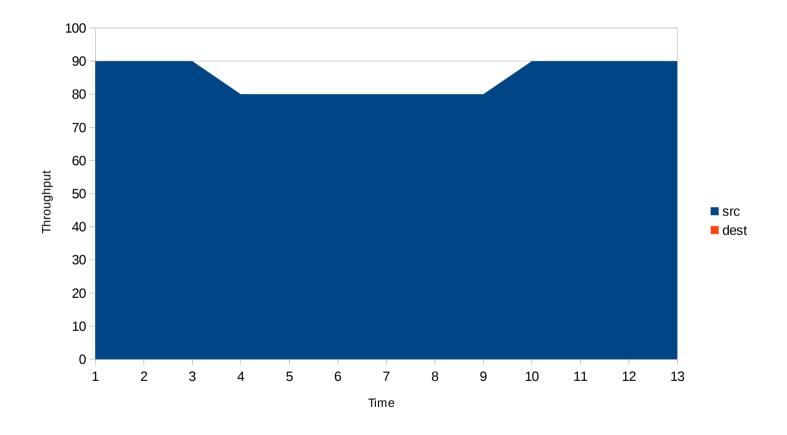
- Performance drop while migration in progress
- Customers don't like this

QEMU Main Loop (old)

```
main loop()
  while (1) {
    service guest requests();
    service guest io();
    migration pass();
```

QEMU Main Loop (new)

```
thread1
main_loop()
{
  while (1) {
    service_guest_requests();
    service_guest_io();
  }
}
```


```
thread 2

migration_thread()
{
    while (1) {
        migration_pass();
    }
}
```

Add migration thread

}

Helps parallelise guest IO and migration passes

Oops

- Guest doesn't migrate
- Slowness was a feature!

Restrict Guest

- Throttle guest vCPUs
 - Hope the rate of dirtying memory reduces
 - Autoconverge
 - cgroups
- Offline guest vCPUs

Compression

- Multi-threaded compression
 - Compress pages before sending
 - Do this in multiple threads
- xbzrle
 - Send diffs of pages from previous iteration
 - Means we have to maintain a cache of pages sent in previous iteration

Postcopy

- Migrate guest before all RAM has been transferred
- Keep transferring pages from src to dest on a new channel
- Remote-page-fault pages which don't exist on dest
 - Special OOB mode of transferring pages on the new channel
- userfaultfd in Linux implements remote page fault functionality

Other Challenges

Multiple migrations

- Logs get left behind on older hosts
- 24th migration might be failing, 23 prior ones have succeeded
 - but we don't know it's the 24th attempt
- Multiple layers
 - Have to check logs for each layer top->down to find cause
- QEMU defaults
 - Not suitable for all projects
 - QEMU devels don't know about deployment scenarios
 - More communication between projects to understand options
 - New focus on feature pages to expose more info to higher levels

Thank You!

Amit Shah | http://log.amitshah.net | amit.shah@redhat.com