
Porting LLVM to a new OS 

Kai Nacke 

31 January 2016 

LLVM devroom @ FOSDEM‘16 



Porting LLVM 

• There are two possible goals 
– Run LLVM tools on OS 
– Generate code for OS / CPU architecture 

 
• Mission is to run LLVM on previously 

unsupported OS and adding code generation for 
the OS 
 

• Adding a new CPU architecture is a major task 
– Not considered here 

31 January 2016 Kai Nacke | Porting LLVM to a new OS 2 



A very brief look on AIX 

• OS for mission critial tasks 
 

• A UNIX OS, supports System V and BSD APIs 
 

• Runs on POWER architecture 
– Already a target for LLVM 

 
• Good software support 

– Native toolchain 
– Major Open Source Software available 

31 January 2016 Kai Nacke | Porting LLVM to a new OS 3 



Toolchain 

• Prerequisites for LLVM are available 
– gcc, cmake, gmake, … 
– Use this toolchain 

 

• GNU tools use as and ld from OS 
– Expect different command line options 

 

• Not every package works out of the box 
– Python 2.7.x is missing => compile yourself 
– cmake 3.x had problems => use cmake 2.8.x 

31 January 2016 Kai Nacke | Porting LLVM to a new OS 4 



Compile LLVM 

• First compiler run identifies code problems 
– Missing endian definitions 

– Wrong path handling code choosen 

 

• Linking fails because of unsupported options 
– Updates to the cmake modules necessary 

 

• Still problems with ThreadPool code 
– Needs more investigation 

31 January 2016 Kai Nacke | Porting LLVM to a new OS 5 



Running LLVM on AIX 

• All LLVM tools are compiled and run 

 

• Results of test suite are similar to Linux/PPC 

 

• Still no code generation for AIX 

31 January 2016 Kai Nacke | Porting LLVM to a new OS 6 



Code Generation 

• LLVM misses code generation for AIX 

 

• You can‘t use the Linux/PPC ELF-based tools 

– Binary format is XCOFF 

– Textual assembler is different 

 

• Idea is to tweak assembler generation and use 
external assembler to create object file 

31 January 2016 Kai Nacke | Porting LLVM to a new OS 7 



XCOFF 

• XCOFF is an extended COFF format 

• Basically it adds the TOC concept to COFF 

• Major differences to COFF 

– No PE header 

– Smallest adressable unit is csect 

– A csect always has a storage class associated 

• Assembler text uses .csect 

31 January 2016 Kai Nacke | Porting LLVM to a new OS 8 



Partial Class Hierarchy 

PPCAIXAsmPrinter 

PPCAsmPrinter 

AsmPrinter 

Triple 

MCAsmInfoXCOFF 

MCAsmInfoCOFF 

MCAsmInfo 
<<uses>> 

MCSectionCOFF 

MCSection 

<<uses>> <<uses>> 

… 

new 

new 

PPCAsmInfoXCOFF 

new 
MCObjectFileInfo 

<<uses>> 

<<instantiates>> 

changed 

changed 

changed 

UsesAIXSectionDirective 

usesAIXSectionDirective() 

31 January 2016 Kai Nacke | Porting LLVM to a new OS 9 

changed 



Implementation 

• Outputs .section as .csect 

– Required lot of changes 

 

• Makes storage class part of section name 
– Only a hack 

 

• Use raw text output for missing op‘s 

 

• Relocation syntax requires more work 

31 January 2016 Kai Nacke | Porting LLVM to a new OS 10 



Summary / Outlook 

• First patches submitted 

• Work on relocation syntax required 

– Needed for „Hello World“ application 

• Working approach 

 

• Next step is dumping of XCOFF files 

 

 

31 January 2016 Kai Nacke | Porting LLVM to a new OS 11 


