
Lmod: Building a Community around an
Environment Modules Tool

Robert McLay

The Texas Advanced Computing Center

Jan. 30, 2015

Environment Modules
Using Lua Features

Building a Community
Tech Solutions for reliable programs

Conclusions

Outline

• What are Environment Modules and Lmod?

• Using Lua to implement Lmod features

• My experience building a community

• Lmod tech. solutions to built trust

• Conclusions

2/36

Environment Modules
Using Lua Features

Building a Community
Tech Solutions for reliable programs

Conclusions

What are Environment Modules?

• A tool to set (and unset!) environment variables.

• Useful for adding elements to $PATH, $LD LIBRARY PATH

• Also remove elements from $PATH, etc as well.

• 1st paper on Env. Modules in 1991 by Furlani.

• There is a TCL/C based tool (a.k.a Tmod)

3/36

Environment Modules
Using Lua Features

Building a Community
Tech Solutions for reliable programs

Conclusions

Why is this useful?

• High Performance Computers have hundreds of users.

• Physicists, Chemists, Biologist, Engineers need different
software

• Modules provide a convenient way to support them all.

• A software developers delight:

– Switch compilers easily.
– For both versions and programs.

4/36

Environment Modules
Using Lua Features

Building a Community
Tech Solutions for reliable programs

Conclusions

An Example

$ ddt

command not found: ddt

$ module load ddt

$ ddt

$ module rm ddt

$ ddt

command not found: ddt

5/36

Environment Modules
Using Lua Features

Building a Community
Tech Solutions for reliable programs

Conclusions

What is Lmod?

• A Lua based Enviroment Module Tool that supports TCL
modulefiles

• Tmod doesn’t support a software hierarchy

• The C++ Boost library needs to match Compiler and Version

• Switch compilers should swap boost to match

• Lmod does this automatically

6/36

Environment Modules
Using Lua Features

Building a Community
Tech Solutions for reliable programs

Conclusions

Why is this possible?

• How can a command effect the current environment?

• In Unix, the child process inherits the environment

• Not the other way around

7/36

Environment Modules
Using Lua Features

Building a Community
Tech Solutions for reliable programs

Conclusions

The trick

• All lmod does is produce text.

• module () { eval $(lmod bash "$@")}

8/36

Environment Modules
Using Lua Features

Building a Community
Tech Solutions for reliable programs

Conclusions

A Simple Modulefile in Lua

help([[A help message for ddt]])

setenv("TACC_DDT_DIR", "/opt/apps/ddt/3.4.1")

prepend_path("PATH", "/opt/apps/ddt/3.4.1/bin")

9/36

Environment Modules
Using Lua Features

Building a Community
Tech Solutions for reliable programs

Conclusions

Results from module load ddt

in Bash:

export TACC_DDT_DIR="/opt/apps/ddt/3.4.1"

export PATH="/opt/apps/ddt/3.4.1/bin:..."

in C-shell:

setenv TACC_DDT_DIR "/opt/apps/ddt/3.4.1"

setenv PATH "/opt/apps/ddt/3.4.1/bin:..."

10/36

Environment Modules
Using Lua Features

Building a Community
Tech Solutions for reliable programs

Conclusions

Results from module unload ddt

in Bash:

unset TACC_DDT_DIR

export PATH="..."

in C-shell:

unsetenv TACC_DDT_DIR

setenv PATH "..."

11/36

Environment Modules
Using Lua Features

Building a Community
Tech Solutions for reliable programs

Conclusions

What is Lmod doing?

• Sites/Users write actions required for load.

• Each function does different things depending on mode.

• It is usually either: action, reverse, quiet

12/36

Environment Modules
Using Lua Features

Building a Community
Tech Solutions for reliable programs

Conclusions

How to handle the different modes?

1. Single functions with if tests

2. redefine setenv, prepend path, ...

3. Class based solution

13/36

Environment Modules
Using Lua Features

Building a Community
Tech Solutions for reliable programs

Conclusions

Module functions

main()

local mode = "load"

mcp = MasterControl.build(mode)

...

sandbox_run(fn)

end

function setenv(...)

mcp:setenv(...)

end

function prepend_path(...)

mcp:prepend_path(...)

end

14/36

Environment Modules
Using Lua Features

Building a Community
Tech Solutions for reliable programs

Conclusions

Factory to build Lmod evaluation modes

function MasterControl.build(name)

local tbl = { load = require(’MC_Load’),

unload = require(’MC_Unload’), }
return tbl[name]:create()

end

15/36

Environment Modules
Using Lua Features

Building a Community
Tech Solutions for reliable programs

Conclusions

MC Load.lua, MC Unload.lua

MC_Load.lua

local M = inheritsFrom(MasterControl)

M.help = MasterControl.quiet

M.prepend_path = MasterControl.prepend_path

M.setenv = MasterControl.setenv

return M

MC_Unload.lua

local M = inheritsFrom(MasterControl)

M.help = MasterControl.quiet

M.prepend_path = MasterControl.remove_path

M.setenv = MasterControl.unsetenv

return M

16/36

Environment Modules
Using Lua Features

Building a Community
Tech Solutions for reliable programs

Conclusions

Sandboxing

• Lmod uses a “sandbox” to evaluate modulefiles

• This is pcall(untrusted function) with a limited
environment

• No stack traceback for broken modulefiles.

• Protect Users from calling Lmod internal functions.

• Sites can add their own functions.

17/36

Environment Modules
Using Lua Features

Building a Community
Tech Solutions for reliable programs

Conclusions

Hooks & SitePackage.lua

• Tmod has been around for 20+ years.

• Each site does things differently.

• Sites must be able to control behavior.

• Sites can create a SitePackage.lua file

• Register function with the hooks.

18/36

Environment Modules
Using Lua Features

Building a Community
Tech Solutions for reliable programs

Conclusions

Example Hook Functions

• Use the load hook to keep track of module usage

• Register the site’s name.

• Use the message hook to add to the output of avail and
spider.

19/36

Environment Modules
Using Lua Features

Building a Community
Tech Solutions for reliable programs

Conclusions

Passing Lmod state between calls

• Lmod uses a table to keep its state

• This is base64 encoded and stored in the environment

• This encoding avoids having to deal with quotes.

20/36

Environment Modules
Using Lua Features

Building a Community
Tech Solutions for reliable programs

Conclusions

Lmod beginning (I)

• Lmod was first released in 2009.

• I prototyped it in Lua

• Figuring that Tmod community might be interested.

• The prototype was fast enough!

21/36

Environment Modules
Using Lua Features

Building a Community
Tech Solutions for reliable programs

Conclusions

Lmod beginning (II)

• It was deployed at TACC.

• Opt-in/Opt-out strategy.

• TACC is one of the largest Open Science HPC systems in US.

• With over 10K user accounts (not all active)

• Lmod was designed to “scratch the itch” of our problems.

• Announced Lmod on the Environment Modules Mailing list.

22/36

Environment Modules
Using Lua Features

Building a Community
Tech Solutions for reliable programs

Conclusions

Early User Interaction

• A user will find Lmod as the “answer” to their needs

• Sometimes I’m their new best friend.

• Sometimes that means stretching Lmod in new directions

• Sometimes that means saying no.

• I refused to add A.I. or change core features for your site only.

23/36

Environment Modules
Using Lua Features

Building a Community
Tech Solutions for reliable programs

Conclusions

Building Trust

• We are all busy people.

• Few will change to my tool just because it is new.

• It has to be way “better” somehow.

• They want to know that you’ll be around to support it.

24/36

Environment Modules
Using Lua Features

Building a Community
Tech Solutions for reliable programs

Conclusions

Lmod’s way to Build Trust

• A mailing list where questions get answered.

• Presentations at important conferences: SC, XSEDE, ISC

• Good up-to-date documentation (I’m working on it!!)

• Try not to break compatibility with original.

25/36

Environment Modules
Using Lua Features

Building a Community
Tech Solutions for reliable programs

Conclusions

Specific issues w.r.t. Lua

• Lua is a great language to work in.

• But the community of users is much smaller than Python.

• There has been some resistance to accepting Lmod

• “I don’t want to learn Lua!” - a busy sys-admin

• “When is this going to be ported to Python?” - another
sys-admin

• A fair amount of feature request and bug reports

• Not much contributed code.

26/36

Environment Modules
Using Lua Features

Building a Community
Tech Solutions for reliable programs

Conclusions

Feature Requests from users

• User requests feature that I don’t think I’ll use

• But sometimes my site does!

• Sometime users ask the right questions

• They can sometimes solve tech problems.

27/36

Environment Modules
Using Lua Features

Building a Community
Tech Solutions for reliable programs

Conclusions

Tech Solutions

• A Test Suite for Lmod

• Logging Capability

• Report configuration.

28/36

Environment Modules
Using Lua Features

Building a Community
Tech Solutions for reliable programs

Conclusions

Test Suite

• Hermes framework test suite: tm program

• A Test tool manager. It runs shell scripts

• The script much report pass/fail/diff

• “Wrong” tests can easily be rerun.

• Available: https://github.com/rtmclay/Hermes

29/36

Environment Modules
Using Lua Features

Building a Community
Tech Solutions for reliable programs

Conclusions

Test Suite (II)

• Lmod produces both stderr and stdout

• Each output is filter to make it generic.

• /home/mclay ⇒ HOME etc.

• Both stderr and stdout must match exactly with gold copies.

• Suite take under 2mins to run all tests.

30/36

Environment Modules
Using Lua Features

Building a Community
Tech Solutions for reliable programs

Conclusions

Logging Capability

• I have yet to find a GUI debugger I like for lua.

• I developed this simple logger with indentation and { }
• This logging is always available

• This way I can debug remote problems!

31/36

Environment Modules
Using Lua Features

Building a Community
Tech Solutions for reliable programs

Conclusions

Logging Code

local dbg = require("Dbg"):dbg()

function M.Load(n)

dbg.start{"Load(",n,")"}
...

dbg.print{"var: ",var,"\n"}
...

dbg.fini("Load")

end

32/36

Environment Modules
Using Lua Features

Building a Community
Tech Solutions for reliable programs

Conclusions

Logging example

$ module -D load ddt 2> load.log

lmod(-D load ddt){
Load(ddt){

MT:_build_locationTbl(mpathA){
Cache:cache(){
} Cache:cache

moduleT: false

}
...

}

33/36

Environment Modules
Using Lua Features

Building a Community
Tech Solutions for reliable programs

Conclusions

Lmod configuration report

• There are many version of Lmod in the wild

• Some a year or more old.

• A bug may have been fixed in a new version

• Lmod has many options to control its behavior

• The configuration report is always include with logging.

34/36

Environment Modules
Using Lua Features

Building a Community
Tech Solutions for reliable programs

Conclusions

Lmod configuration report

Modules based on Lua: Version 6.0.25 2016-01-12 09:51

by Robert McLay mclay@tacc.utexas.edu

Description Value

----------- -----

Allow TCL modulefiles yes

Auto swapping yes

Case Independent Sorting no

Colorize Lmod yes

...

35/36

Environment Modules
Using Lua Features

Building a Community
Tech Solutions for reliable programs

Conclusions

Conclusions

• It has been an interesting ride!

• Lmod is available from github, sourceforge

• Available: brew, fedora, Debian, Ubuntu, ...

• Lmod is more reliable and much more capable than just
in-house project

• It has been a great deal of fun

• But also a lot of work!

• And there is no way I’m going to keep them all happy.

36/36

	Environment Modules
	Using Lua Features
	Building a Community
	Tech Solutions for reliable programs
	Conclusions

