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IntroductionIntroduction

Two system-level projects
RISC-V is an instruction set architecture,
HelenOS is an operating system
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IntroductionIntroduction

Two system-level projects
RISC-V is an instruction set architecture,
HelenOS is an operating system
Both originally started in academia

But with real-world motivations and ambitions
Both still in the process of maturing

Some parts already fixed, other parts can be still 
affected
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IntroductionIntroduction

Two system-level projects
RISC-V is an instruction set architecture,
HelenOS is an operating system
Both originally started in academia

But with real-world motivations and ambitions
Both still in the process of maturing

Some parts already fixed, other parts can be still 
affected

→ Mutual evaluation of fitness
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IntroductionIntroduction

Martin Děcký
Computer science researcher

Operating systems
Charles University in Prague

Co-author of HelenOS (since 2004)
Original author of the PowerPC port
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RISC-V in a NutshellRISC-V in a Nutshell

Free (libre) instruction set architecture
BSD license, in development since 2014
Goal: No royalties for analyzing, designing, 
manufacturing and selling chips (and related 
software)
http://riscv.org

http://riscv.org/
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RISC-V in a Nutshell (2)RISC-V in a Nutshell (2)

Based on reduced instruction set (RISC) principles
Design based on time-proven ideas, but avoiding 
mistakes and anachronisms

High-performance Z-scale, Rocket and BOOM prototype 
chips manufactured (at 45 nm and 28 nm)

Scalable and extendable clean-slate design
From small embedded systems (low-power minimal 32-bit 
implementations)
To large computers (powerful implementations, 64-bit or 
even 128-bit, SIMD, VLIW, etc.)
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Context of RISC-VContext of RISC-V

Comparison with previous free ISAs
OpenRISC, OpenSPARC, LaticeMico32, MMIX, 
Amber, LEON
Goals of RISC-V

BSD instead of GPL
Modularity and scalability
Supporting 32 bits and 64 bits (128 bits in the future)
Not just for research and education
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Context of RISC-V (2)Context of RISC-V (2)

Comparison with commercial ISAs
IA-32, AMD64, IA-64, ARM

Complex or rather complex
Intellectual property minefield

SPARC, POWER, MIPS
Still intellectual property minefield

Old patent-free ISAs
(ARMv2, Berkeley RISC, Stanford MIPS)

Obsolete
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Context of RISC-V (2)Context of RISC-V (2)

Comparison with commercial ISAs
Goals of RISC-V

Free
Relevant
State-of-the-art
Practical
Reasonable complexity



12Martin Děcký, FOSDEM, January 30th 2016 Porting HelenOS to RISC-V

Who Is behind RISC-VWho Is behind RISC-V

UC Berkeley, Computer Science Division
Krste Asanović

Principal designer
David Patterson

Coined the term RISC and led the original Berkeley RISC 
project (1980)

Later exploited in SPARC, Alpha and ARM
Co-author of DLX (with John Hennessy for Computer 
Architecture: A Quantitative Approach)

Funding from DARPA, Intel, Microsoft and others
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Who Is behind RISC-V (2)Who Is behind RISC-V (2)

RISC-V Foundation
Non-profit corporation

Rick O'Connor (Executive Director)
http://riscv.net

Governing the evolution of RISC-V ISA
Standardization of extensions
Intellectual property matters (patents, logos, trademarks, etc.)

Founding members
Google, Hewlett Packard Enterprise, Lattice, Oracle, lowRISC 
and others

http://riscv.net/
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Implementors of RISC-VImplementors of RISC-V

Indian Institute of Technology Madras
Plan to produce six CPU designs based on RISC-V

Bluespec
Preliminary plan to produce RISC-V based CPUs

lowRISC
Non-profit organization (cooperating with University of 
Cambridge and Raspberry Pi Foundation)
Implementing open source SoC based on 64 bit RISC-V 
(scheduled for 2017)
Tagged memory
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Features of RISC-VFeatures of RISC-V

RISC architecture
Word size of 32 or 64 bits

Word size of 128 bits possible in the future
32 general-purpose registers (word-sized)

Load/store architecture
R0 always contains 0
8 bit and 16 bit arithmetics via sign extension
Plain register file (no register windows, register stacks, etc.)

Optional 32 floating point registers (IEEE 754)
Little-endian, byte-addressable memory



17Martin Děcký, FOSDEM, January 30th 2016 Porting HelenOS to RISC-V

Features of RISC-V (2)Features of RISC-V (2)

RISC architecture
32-bit instructions

Orthogonal instruction set
Limited number of instruction templates

Fixed positions for specific opcode bits for fast decoding and 
immediate argument sign extension

Three-argument instructions
Synthetic instructions

R0 used to provide two-argument synthetic instructions
Implicit stack
Mandatory alignment of memory accesses



18Martin Děcký, FOSDEM, January 30th 2016 Porting HelenOS to RISC-V

Features of RISC-V (3)Features of RISC-V (3)

Beyond RISC
No branch delay slots
No condition codes, flag registers, carry bits

Conditions evaluated in branch instructions
Practical design of instruction encoding

Opcode bits designed to reduce the number of 
multiplexers
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Features of RISC-V (4)Features of RISC-V (4)

Beyond RISC
Native support for position-independent code

Address calculation relative to the program counter
Fused multiply-add by future accelerated decoding
Instruction set extentions

Mandatory instruction set
Optional (non-conflicting) extentions

Green-field and brown-field allocations
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RISC-V Instruction SetRISC-V Instruction Set

op (7) rd (5) fnct3 (3) rs1 (5) rs2 (5) fnct7 (7)R-type

I-type op (7) rd (5) fnct3 (3) rs1 (5) immediate (12)

RV32I (Base Integer Instruction Set)

S-type op (7) imm (5) fnct3 (3) rs1 (5) rs2 (5) imm (7)

U-type op (7) rd (5) imm (20)
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RISC-V Instruction Set (2)RISC-V Instruction Set (2)

RV32I (Base Integer Instruction Set)
Computational

addition, subtraction, set less than, and, or, xor, shift left logical, shift right 
logical, shift right arithmetic, load upper immediate, add upper immediate 
to PC, no-op

Control transfer
unconditional jump (with link), branch (equal, not equal, less than, greater 
or equal)

Load and store
load, store, memory fence

System
system call, breakpoint, CPU cycles, retired CPU instructions, wall-clock time
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RISC-V Instruction Set (3)RISC-V Instruction Set (3)

RV64I (Base Integer Instruction Set)
Essentially the same instructions as in RV32I (some variations 
accommodating the 64-bit word size)

Standard extensions
M (Integer Multiplication and Division)
A (Atomic Instructions)

load-reserved, store-conditional, atomic memory operation (swap, 
addition, and, or, xor, max, min)

F (Single-Precision Floating Point)
D (Double-Precision Floating Point)

General purpose ISA: RV64IMAFD = RV64G (164 instructions)
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RISC-V Instruction Set (4)RISC-V Instruction Set (4)

More standard extensions
Q (Quad-Precision Floating Point)
D (Decimal Floating Point)
C (16-bit Compressed Instructions)
B (Bit Manipulations)
T (Transactional Memory)
P (Packed-SIMD)

RV128I (Base Integer Instruction Set)
Sketched
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Features of RISC-V (5)Features of RISC-V (5)

Beyond RISC
Reserved opcodes for non-32-bit instructions

64-bit instructions, variable-length instructions, even 
instruction bundles (VLIW)
Compressed instruction set

16-bit instructions
No separate execution mode necessary
(intermixed with 32-bit instructions)
Code on average 20 % smaller than x86,
2 % smaller than ARM Thumb-2
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RISC-V Instruction LengthRISC-V Instruction Length

11bbbxxxxxxxxxxx xxxxxxxxxxxxxxxxx32-bit
(bbb != 111)

aaxxxxxxxxxxxxxx16-bit
(aa != 11)

48-bit 111110xxxxxxxxxx xxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxx

64-bit 1111110xxxxxxxxx xxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxx ...

(80+16×n)-bit
(n < 15) 1111111nnnnxxxxx xxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxx ...
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RISC-V Privileged Software StacksRISC-V Privileged Software Stacks

Application

Application Binary Interface

Application Execution Environment

Hardware Abstraction Layer

Hardware
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RISC-V Privileged Software StacksRISC-V Privileged Software Stacks

Supervisor Binary Interface

Supervisor Execution Environment

Application

Application Binary Interface

Operating System

Application

Application Binary Interface

Hardware Abstraction Layer

Hardware
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RISC-V Privileged Software StacksRISC-V Privileged Software Stacks

Supervisor Binary Interface

Application

Application Binary Interface

Operating System

Application

Application Binary Interface

Application

Application Binary Interface

Operating System

Application

Application Binary Interface

Supervisor Binary Interface

Hypervisor

Hypervisor Binary Interface

Hypervisor Execution Environment

Hardware Abstraction Layer

Hardware
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RISC-V Privileged Software StacksRISC-V Privileged Software Stacks

Privilege Levels
Machine (M)
Hypervisor (H)
Supervisor (S)

Same set of privileged 
instructions

User/Application (U)
Each level own set of 
Control and Status 
Registers (CSR)

4×1024 I/O space

Supported combinations
M

Embedded systems
M+U

Embedded systems 
with protection

M+S+U
Standard OS

M+H+S+U
Standard OS with 
virtualization
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RISC-V Machine-Level ISARISC-V Machine-Level ISA

CSRs
CPU and hardware thread ID
Machine status (privilege level, interrupts)
Memory management status

No memory translation
Single base-and-bound
Separate instruction/data base-and-bound
32-bit virtual addresses (2-level hierarchical page tables)
39-bit virtual addresses (3-level hierarchical page tables)
48-bit virtual addresses (4-level hierarchical page tables)
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HelenOS in a NutshellHelenOS in a Nutshell

Microkernel multiserver operating system
BSD license, in development since 2004
Goal: General-purpose usability, not limited by any 
specific use case or hardware platform, 
component-based design and implementation
http://helenos.org

http://helenos.org/
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HelenOS in a Nutshell (2)HelenOS in a Nutshell (2)
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Features of HelenOSFeatures of HelenOS

Design based on explicit design principles
Non-fundamentalistic metaprinciple
General-purpose principle
Microkernel principle
Full-fledged principle
Multiserver principle
Split of mechanism and policy principle
Encapsulation principle
Portability principle
Modularity principle
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Portability of HelenOSPortability of HelenOS

Supporting 8 hardware platforms
IA-32, AMD64, IA-64, ARM, PowerPC, MIPS, 
SPARC V8, SPARC V9
Portability case studies

Port to ARM in 53 days by 3 developers
Port to SPARC V8 in 13 weeks by 1 developer

Porting efforts improve portability
Portability simplifies future porting efforts
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Portability of HelenOS (2)Portability of HelenOS (2)

Portability design principle
“Do not be biased by any single hardware 
platform”

Reusable abstract algorithms
4-level page tables
ASID LRU management
interrupt routing

Hardware Abstraction Layer defined by a virtual 
abs32le port
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HelenOS abs32leHelenOS abs32le

NO_TRACE static inline void atomic_inc(atomic_t *val)
{
#ifdef CONFIG_SMP

asm volatile (
”lock incq %[count]\n”
: [count] ”+m” (val->count)

);
#else

asm volatile (
”incq %[count]\n”
: [count] ”+m” (val->count)

);
#endif /* CONFIG_SMP */
}

Atomic increment on IA-32



38Martin Děcký, FOSDEM, January 30th 2016 Porting HelenOS to RISC-V

HelenOS abs32leHelenOS abs32le

NO_TRACE ATOMIC static inline void atomic_inc(atomic_t *val)
WRITES(&val->count)
REQUIRES_EXTENT_MUTABLE(val)
REQUIRES(val->count < ATOMIC_COUNT_MAX)

{
/*
 * On real hardware the increment has to be done
 * as an atomic action.
 */

val->count++;
}

Atomic increment behavior summary on abs32le

plain C behavior summary

semantic annotations
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HelenOS RISC-V PortHelenOS RISC-V Port

Reasons
Future combined verification of HW/SW correctness

Current status
Started in January 2016
Finished: Boot loader, initial memory management 
setup, kernel hand-off

Everything compiles
Memory management data structures in place
18 hours (net)
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HelenOS RISC-V PortHelenOS RISC-V Port

Demo
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HelenOS RISC-V Port (2)HelenOS RISC-V Port (2)

General approach
Cloning the abs32le virtual port

Changing names, endianity, word width, primitive types, 
linker script and other basic definitions

Adding the new platform to the build system
Adding basic options to HelenOS.config
Adding the compiler toolchain to tools/autotool.py

Checking that everything compiles (mostly trivial)
Gradually adding actual working implementation
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HelenOS RISC-V Port (3)HelenOS RISC-V Port (3)

#define EM_RISCV  243  /* RISC-V */

abi/include/abi/elf.h

.org DEFAULT_MTVEC + TRAP_VECTOR_RESET
start:

/* Set up stack, create stack frame */
la sp, boot_stack + BOOT_STACK_SIZE
addi sp, sp, -16

j bootstrap

#define EM_RISCV  243  /* RISC-V */#define EM_RISCV  243  /* RISC-V */

boot/arch/riscv64/src/asm.S
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HelenOS RISC-V Port (3)HelenOS RISC-V Port (3)

#define EM_RISCV  243  /* RISC-V */#define EM_RISCV  243  /* RISC-V */#define ADDRESS_SPACE_HOLE_START  UINT64_C(0x0000800000000000)
#define ADDRESS_SPACE_HOLE_END    UINT64_C(0xffff7fffffffffff)

#define KERNEL_ADDRESS_SPACE_SHADOWED_ARCH  0

#define KERNEL_ADDRESS_SPACE_START_ARCH  UINT64_C(0xffff800000000000)
#define KERNEL_ADDRESS_SPACE_END_ARCH    UINT64_C(0xffffffffffffffff)
#define USER_ADDRESS_SPACE_START_ARCH    UINT64_C(0x0000000000000000)
#define USER_ADDRESS_SPACE_END_ARCH      UINT64_C(0x00007fffffffffff)

kernel/arch/riscv64/include/arch/mm/as.h

/** Page Table Entry. */
typedef struct {

unsigned long valid : 1;       /**< Valid bit. */
unsigned long type : 4;        /**< Entry type. */
unsigned long referenced : 1;  /**< Refenced bit. */
unsigned long dirty : 1;       /**< Dirty bit. */
unsigned long reserved : 3;    /**< Reserved bits. */
unsigned long pfn : 54;        /**< Physical frame number. */

} pte_t;

kernel/arch/riscv64/include/arch/mm/page.h
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HelenOS RISC-V Port (4)HelenOS RISC-V Port (4)

Near future
Basic kernel functionality

Interrupt/exception handling
Context switching, atomics
ETA: 18 – 24 hours (net)

Basic user space functionality
Thread-local storage
User space context switching
I/O
ETA: 18 – 24 hours (net)
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Current State of RISC-VCurrent State of RISC-V

User-level ISA
Version 2.0, frozen since May 6th 2014

Compressed ISA
Version 1.9, draft, to be frozen soon

Privileged ISA
Version 1.7, draft, expected to be frozen in mid-2016 or 
later

Vector ISA
Only sketched so far
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Current State of RISC-V (2)Current State of RISC-V (2)

Holes in the specification
Memory consistency model
Application Binary Interface (ABI)
Performance counters
Hypervisor support
Formal specification (for verification)
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Current State of RISC-V (3)Current State of RISC-V (3)

Holes in the specification
Reference platform

Standard I/O locations (standard memory map)
Debugging support (hardware breakpoints, JTAG)
Interrupt controller, timer, RTC, reset mechanism, DMA, 
IOMMU
Power management
Standard firmware (standard device tree)
Standard boot loader
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Current State of RISC-V (4)Current State of RISC-V (4)

Available tooling
Development tools

GNU Binutils, GCC, GDB, LLVM, clang, Go, libf
Enviroments

Newlib, glibc
Simulators / Emulators

Spike (MSIM-like), QEMU (80 % of privileged ISA), 
ANGEL (JavaScript), Simics, trace32

Not upstreamed yet
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Current State of RISC-V (5)Current State of RISC-V (5)

Software stack
Firmware

coreboot (on Spike, upstreamed)
UEFI (a hack of EDKII on QEMU with PC peripherals)

Operating systems
Linux (with busybox), Yocto/OpenEmbedded
FreeBSD, NetBSD (to be upstreamed soon)
seL4
HelenOS (work-in-progress)
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Preliminary Porting ObservationsPreliminary Porting Observations

RISC-V is like a mixture of MIPS and AMD64
HelenOS generic 4-level page tables suitable for 
RISC-V

RISC-V compressed access permission field in page 
tables is more cumbersome than access bits

No forced platform-independent code change 
expected
HelenOS and RISC-V evaluate as good match for 
each other
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Preliminary Porting ObservationsPreliminary Porting Observations

RISC-V underspecification causes only minor 
issues

Generally, the CPU specs are fine
“Reference platform” documented only in the 
code of the Spike simulator

E.g. host-target interface implementing basic I/O 
devices using CSRs
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ConclusionConclusion

RISC-V
Interesting and solid research/development effort
Great potential for both academia and industry

HelenOS
RISC-V port underway, no roadblock in sight
History of HelenOS portability improves future 
portability
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Q&A



www.riscv.org

www.helenos.org

http://www.riscv.org/
http://www.helenos.org/


55Martin Děcký, FOSDEM, January 30th 2016 Porting HelenOS to RISC-V

Backup
slides
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Context of RISC-VContext of RISC-V

Not the first free ISA, but the most degrees of 
freedom

OpenRISC
2000, LGPL, based on DLX, fixed ISA (not extendable)

OpenSPARC
2005, GPL, based on UltraSPARC T1 (SPARC V9), fixed 
configuration (i.e. number of cores, etc.)

LaticeMico32
2006, custom open source license (a mixture of several 
licenses), 32-bit
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Context of RISC-V (2)Context of RISC-V (2)

Not the first free ISA, but the most degrees of 
freedom

MMIX
2009, a non-free open source license, Donald Knuth, John 
Hennessy and Richard Sites (inspired by Knuth's MIX), 64-bit, 
for educational purposes

Amber
2010, LGPL, ARMv2 compatible (32-bit)

LEON
2000-2010, LGPL + dual licensing, SPARC V8 compatible (32-bit)
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RISC-V in AcademiaRISC-V in Academia

Highlights of research projects based on RISC-V
Formal specification & verification

Chisel open source hardware construction language 
[UC Berkeley]
Novel bespoke weak memory consistency models [MIT]

Novel manycore configurations [Gray Research]
First experimental photonic CPU [UC Berkeley]
Experimental ISA extensions [ETH Zürich]

Hardware loops
Faster ISA simulators using JIT [Cornell]
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