
http://d3s.mff.cuni.cz

Martin Děcký

decky@d3s.mff.cuni.cz

CHARLES UNIVERSITY IN PRAGUE

Faculty of Mathematics and PhysicsFaculty of Mathematics and Physics

Porting HelenOS to RISC-VPorting HelenOS to RISC-V

2Martin Děcký, FOSDEM, January 30th 2016 Porting HelenOS to RISC-V

IntroductionIntroduction

Two system-level projects
RISC-V is an instruction set architecture,
HelenOS is an operating system

3Martin Děcký, FOSDEM, January 30th 2016 Porting HelenOS to RISC-V

IntroductionIntroduction

Two system-level projects
RISC-V is an instruction set architecture,
HelenOS is an operating system
Both originally started in academia

But with real-world motivations and ambitions
Both still in the process of maturing

Some parts already fixed, other parts can be still
affected

4Martin Děcký, FOSDEM, January 30th 2016 Porting HelenOS to RISC-V

IntroductionIntroduction

Two system-level projects
RISC-V is an instruction set architecture,
HelenOS is an operating system
Both originally started in academia

But with real-world motivations and ambitions
Both still in the process of maturing

Some parts already fixed, other parts can be still
affected

→ Mutual evaluation of fitness

5Martin Děcký, FOSDEM, January 30th 2016 Porting HelenOS to RISC-V

IntroductionIntroduction

Martin Děcký
Computer science researcher

Operating systems
Charles University in Prague

Co-author of HelenOS (since 2004)
Original author of the PowerPC port

7Martin Děcký, FOSDEM, January 30th 2016 Porting HelenOS to RISC-V

RISC-V in a NutshellRISC-V in a Nutshell

Free (libre) instruction set architecture
BSD license, in development since 2014
Goal: No royalties for analyzing, designing,
manufacturing and selling chips (and related
software)
http://riscv.org

http://riscv.org/

8Martin Děcký, FOSDEM, January 30th 2016 Porting HelenOS to RISC-V

RISC-V in a Nutshell (2)RISC-V in a Nutshell (2)

Based on reduced instruction set (RISC) principles
Design based on time-proven ideas, but avoiding
mistakes and anachronisms

High-performance Z-scale, Rocket and BOOM prototype
chips manufactured (at 45 nm and 28 nm)

Scalable and extendable clean-slate design
From small embedded systems (low-power minimal 32-bit
implementations)
To large computers (powerful implementations, 64-bit or
even 128-bit, SIMD, VLIW, etc.)

9Martin Děcký, FOSDEM, January 30th 2016 Porting HelenOS to RISC-V

Context of RISC-VContext of RISC-V

Comparison with previous free ISAs
OpenRISC, OpenSPARC, LaticeMico32, MMIX,
Amber, LEON
Goals of RISC-V

BSD instead of GPL
Modularity and scalability
Supporting 32 bits and 64 bits (128 bits in the future)
Not just for research and education

10Martin Děcký, FOSDEM, January 30th 2016 Porting HelenOS to RISC-V

Context of RISC-V (2)Context of RISC-V (2)

Comparison with commercial ISAs
IA-32, AMD64, IA-64, ARM

Complex or rather complex
Intellectual property minefield

SPARC, POWER, MIPS
Still intellectual property minefield

Old patent-free ISAs
(ARMv2, Berkeley RISC, Stanford MIPS)

Obsolete

11Martin Děcký, FOSDEM, January 30th 2016 Porting HelenOS to RISC-V

Context of RISC-V (2)Context of RISC-V (2)

Comparison with commercial ISAs
Goals of RISC-V

Free
Relevant
State-of-the-art
Practical
Reasonable complexity

12Martin Děcký, FOSDEM, January 30th 2016 Porting HelenOS to RISC-V

Who Is behind RISC-VWho Is behind RISC-V

UC Berkeley, Computer Science Division
Krste Asanović

Principal designer
David Patterson

Coined the term RISC and led the original Berkeley RISC
project (1980)

Later exploited in SPARC, Alpha and ARM
Co-author of DLX (with John Hennessy for Computer
Architecture: A Quantitative Approach)

Funding from DARPA, Intel, Microsoft and others

14Martin Děcký, FOSDEM, January 30th 2016 Porting HelenOS to RISC-V

Who Is behind RISC-V (2)Who Is behind RISC-V (2)

RISC-V Foundation
Non-profit corporation

Rick O'Connor (Executive Director)
http://riscv.net

Governing the evolution of RISC-V ISA
Standardization of extensions
Intellectual property matters (patents, logos, trademarks, etc.)

Founding members
Google, Hewlett Packard Enterprise, Lattice, Oracle, lowRISC
and others

http://riscv.net/

15Martin Děcký, FOSDEM, January 30th 2016 Porting HelenOS to RISC-V

Implementors of RISC-VImplementors of RISC-V

Indian Institute of Technology Madras
Plan to produce six CPU designs based on RISC-V

Bluespec
Preliminary plan to produce RISC-V based CPUs

lowRISC
Non-profit organization (cooperating with University of
Cambridge and Raspberry Pi Foundation)
Implementing open source SoC based on 64 bit RISC-V
(scheduled for 2017)
Tagged memory

16Martin Děcký, FOSDEM, January 30th 2016 Porting HelenOS to RISC-V

Features of RISC-VFeatures of RISC-V

RISC architecture
Word size of 32 or 64 bits

Word size of 128 bits possible in the future
32 general-purpose registers (word-sized)

Load/store architecture
R0 always contains 0
8 bit and 16 bit arithmetics via sign extension
Plain register file (no register windows, register stacks, etc.)

Optional 32 floating point registers (IEEE 754)
Little-endian, byte-addressable memory

17Martin Děcký, FOSDEM, January 30th 2016 Porting HelenOS to RISC-V

Features of RISC-V (2)Features of RISC-V (2)

RISC architecture
32-bit instructions

Orthogonal instruction set
Limited number of instruction templates

Fixed positions for specific opcode bits for fast decoding and
immediate argument sign extension

Three-argument instructions
Synthetic instructions

R0 used to provide two-argument synthetic instructions
Implicit stack
Mandatory alignment of memory accesses

18Martin Děcký, FOSDEM, January 30th 2016 Porting HelenOS to RISC-V

Features of RISC-V (3)Features of RISC-V (3)

Beyond RISC
No branch delay slots
No condition codes, flag registers, carry bits

Conditions evaluated in branch instructions
Practical design of instruction encoding

Opcode bits designed to reduce the number of
multiplexers

19Martin Děcký, FOSDEM, January 30th 2016 Porting HelenOS to RISC-V

Features of RISC-V (4)Features of RISC-V (4)

Beyond RISC
Native support for position-independent code

Address calculation relative to the program counter
Fused multiply-add by future accelerated decoding
Instruction set extentions

Mandatory instruction set
Optional (non-conflicting) extentions

Green-field and brown-field allocations

20Martin Děcký, FOSDEM, January 30th 2016 Porting HelenOS to RISC-V

RISC-V Instruction SetRISC-V Instruction Set

op (7) rd (5) fnct3 (3) rs1 (5) rs2 (5) fnct7 (7)R-type

I-type op (7) rd (5) fnct3 (3) rs1 (5) immediate (12)

RV32I (Base Integer Instruction Set)

S-type op (7) imm (5) fnct3 (3) rs1 (5) rs2 (5) imm (7)

U-type op (7) rd (5) imm (20)

21Martin Děcký, FOSDEM, January 30th 2016 Porting HelenOS to RISC-V

RISC-V Instruction Set (2)RISC-V Instruction Set (2)

RV32I (Base Integer Instruction Set)
Computational

addition, subtraction, set less than, and, or, xor, shift left logical, shift right
logical, shift right arithmetic, load upper immediate, add upper immediate
to PC, no-op

Control transfer
unconditional jump (with link), branch (equal, not equal, less than, greater
or equal)

Load and store
load, store, memory fence

System
system call, breakpoint, CPU cycles, retired CPU instructions, wall-clock time

22Martin Děcký, FOSDEM, January 30th 2016 Porting HelenOS to RISC-V

RISC-V Instruction Set (3)RISC-V Instruction Set (3)

RV64I (Base Integer Instruction Set)
Essentially the same instructions as in RV32I (some variations
accommodating the 64-bit word size)

Standard extensions
M (Integer Multiplication and Division)
A (Atomic Instructions)

load-reserved, store-conditional, atomic memory operation (swap,
addition, and, or, xor, max, min)

F (Single-Precision Floating Point)
D (Double-Precision Floating Point)

General purpose ISA: RV64IMAFD = RV64G (164 instructions)

23Martin Děcký, FOSDEM, January 30th 2016 Porting HelenOS to RISC-V

RISC-V Instruction Set (4)RISC-V Instruction Set (4)

More standard extensions
Q (Quad-Precision Floating Point)
D (Decimal Floating Point)
C (16-bit Compressed Instructions)
B (Bit Manipulations)
T (Transactional Memory)
P (Packed-SIMD)

RV128I (Base Integer Instruction Set)
Sketched

24Martin Děcký, FOSDEM, January 30th 2016 Porting HelenOS to RISC-V

Features of RISC-V (5)Features of RISC-V (5)

Beyond RISC
Reserved opcodes for non-32-bit instructions

64-bit instructions, variable-length instructions, even
instruction bundles (VLIW)
Compressed instruction set

16-bit instructions
No separate execution mode necessary
(intermixed with 32-bit instructions)
Code on average 20 % smaller than x86,
2 % smaller than ARM Thumb-2

25Martin Děcký, FOSDEM, January 30th 2016 Porting HelenOS to RISC-V

RISC-V Instruction LengthRISC-V Instruction Length

11bbbxxxxxxxxxxx xxxxxxxxxxxxxxxxx32-bit
(bbb != 111)

aaxxxxxxxxxxxxxx16-bit
(aa != 11)

48-bit 111110xxxxxxxxxx xxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxx

64-bit 1111110xxxxxxxxx xxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxx ...

(80+16×n)-bit
(n < 15) 1111111nnnnxxxxx xxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxx ...

26Martin Děcký, FOSDEM, January 30th 2016 Porting HelenOS to RISC-V

RISC-V Privileged Software StacksRISC-V Privileged Software Stacks

Application

Application Binary Interface

Application Execution Environment

Hardware Abstraction Layer

Hardware

27Martin Děcký, FOSDEM, January 30th 2016 Porting HelenOS to RISC-V

RISC-V Privileged Software StacksRISC-V Privileged Software Stacks

Supervisor Binary Interface

Supervisor Execution Environment

Application

Application Binary Interface

Operating System

Application

Application Binary Interface

Hardware Abstraction Layer

Hardware

28Martin Děcký, FOSDEM, January 30th 2016 Porting HelenOS to RISC-V

RISC-V Privileged Software StacksRISC-V Privileged Software Stacks

Supervisor Binary Interface

Application

Application Binary Interface

Operating System

Application

Application Binary Interface

Application

Application Binary Interface

Operating System

Application

Application Binary Interface

Supervisor Binary Interface

Hypervisor

Hypervisor Binary Interface

Hypervisor Execution Environment

Hardware Abstraction Layer

Hardware

29Martin Děcký, FOSDEM, January 30th 2016 Porting HelenOS to RISC-V

RISC-V Privileged Software StacksRISC-V Privileged Software Stacks

Privilege Levels
Machine (M)
Hypervisor (H)
Supervisor (S)

Same set of privileged
instructions

User/Application (U)
Each level own set of
Control and Status
Registers (CSR)

4×1024 I/O space

Supported combinations
M

Embedded systems
M+U

Embedded systems
with protection

M+S+U
Standard OS

M+H+S+U
Standard OS with
virtualization

30Martin Děcký, FOSDEM, January 30th 2016 Porting HelenOS to RISC-V

RISC-V Machine-Level ISARISC-V Machine-Level ISA

CSRs
CPU and hardware thread ID
Machine status (privilege level, interrupts)
Memory management status

No memory translation
Single base-and-bound
Separate instruction/data base-and-bound
32-bit virtual addresses (2-level hierarchical page tables)
39-bit virtual addresses (3-level hierarchical page tables)
48-bit virtual addresses (4-level hierarchical page tables)

32Martin Děcký, FOSDEM, January 30th 2016 Porting HelenOS to RISC-V

HelenOS in a NutshellHelenOS in a Nutshell

Microkernel multiserver operating system
BSD license, in development since 2004
Goal: General-purpose usability, not limited by any
specific use case or hardware platform,
component-based design and implementation
http://helenos.org

http://helenos.org/

33Martin Děcký, FOSDEM, January 30th 2016 Porting HelenOS to RISC-V

HelenOS in a Nutshell (2)HelenOS in a Nutshell (2)
ar

ch
it

ec
tu

re
 in

de
pe

nd
en

t

sh
ar

ed
 a

rc
hi

te
ct

ur
e

de
pe

nd
en

t

ar
ch

it
ec

tu
re

de
pe

nd
en

t

bootstrap
routines

CPU
mgmt

atomics
&

barriers

I/O
mgmt

platform
memory

mgmt

platform
drivers

debugging
support

context
switching

interrupt
handling

platform
library

routines

shared
platform
drivers

shared
debugging

support

hierarchical
page table

support

global page
hash table

support

hardware

layer

ab
st

ra
ct

io
n

kernel
unit
tests

memory
backends

memory
zones
mgmt

frame
allocator

slab
allocator

address
space
mgmt

memory
reservation

spinlocks

wait
queues

work
queues

interrupt &
syscall

dispatch

thread
scheduler

thread &
task

mgmt

kernel
lifecycle
mgmt

lists,
trees,

bitmaps

concurrent
hash
table

generic
resource
allocator

ELF
loader

string
routines

misc
routines

kernel
console

IPC

kernel
log

hardware
resource

mgmt

system
information

cycle &
time

mgmt

tracing
support

read-
copy-

update

task
capabilities

cache
coherency

synchro-
nization
interface

kernel

naming
service loader task

monitor

kloglocation
service logger

device
manager

device drivers

client
session

vterm bdsh

vfs

file system
drivers

FAT exFAT ext4

ISO 9660 UDF MINIX FS

TMPFS Location FS

init

transport
layer protocols

tcp udp

link layer
protocols

loopip ethip

slip

inetsrv

networking
management

dnsrsrv dhcp

nconfsrv

human interface

clipboard audio

outputinput

console compositor

remote
console

remote
framebuffer

Kernel subsystems System components

34Martin Děcký, FOSDEM, January 30th 2016 Porting HelenOS to RISC-V

Features of HelenOSFeatures of HelenOS

Design based on explicit design principles
Non-fundamentalistic metaprinciple
General-purpose principle
Microkernel principle
Full-fledged principle
Multiserver principle
Split of mechanism and policy principle
Encapsulation principle
Portability principle
Modularity principle

35Martin Děcký, FOSDEM, January 30th 2016 Porting HelenOS to RISC-V

Portability of HelenOSPortability of HelenOS

Supporting 8 hardware platforms
IA-32, AMD64, IA-64, ARM, PowerPC, MIPS,
SPARC V8, SPARC V9
Portability case studies

Port to ARM in 53 days by 3 developers
Port to SPARC V8 in 13 weeks by 1 developer

Porting efforts improve portability
Portability simplifies future porting efforts

36Martin Děcký, FOSDEM, January 30th 2016 Porting HelenOS to RISC-V

Portability of HelenOS (2)Portability of HelenOS (2)

Portability design principle
“Do not be biased by any single hardware
platform”

Reusable abstract algorithms
4-level page tables
ASID LRU management
interrupt routing

Hardware Abstraction Layer defined by a virtual
abs32le port

37Martin Děcký, FOSDEM, January 30th 2016 Porting HelenOS to RISC-V

HelenOS abs32leHelenOS abs32le

NO_TRACE static inline void atomic_inc(atomic_t *val)
{
#ifdef CONFIG_SMP

asm volatile (
”lock incq %[count]\n”
: [count] ”+m” (val->count)

);
#else

asm volatile (
”incq %[count]\n”
: [count] ”+m” (val->count)

);
#endif /* CONFIG_SMP */
}

Atomic increment on IA-32

38Martin Děcký, FOSDEM, January 30th 2016 Porting HelenOS to RISC-V

HelenOS abs32leHelenOS abs32le

NO_TRACE ATOMIC static inline void atomic_inc(atomic_t *val)
WRITES(&val->count)
REQUIRES_EXTENT_MUTABLE(val)
REQUIRES(val->count < ATOMIC_COUNT_MAX)

{
/*
 * On real hardware the increment has to be done
 * as an atomic action.
 */

val->count++;
}

Atomic increment behavior summary on abs32le

plain C behavior summary

semantic annotations

39Martin Děcký, FOSDEM, January 30th 2016 Porting HelenOS to RISC-V

HelenOS RISC-V PortHelenOS RISC-V Port

Reasons
Future combined verification of HW/SW correctness

Current status
Started in January 2016
Finished: Boot loader, initial memory management
setup, kernel hand-off

Everything compiles
Memory management data structures in place
18 hours (net)

40Martin Děcký, FOSDEM, January 30th 2016 Porting HelenOS to RISC-V

HelenOS RISC-V PortHelenOS RISC-V Port

Demo

41Martin Děcký, FOSDEM, January 30th 2016 Porting HelenOS to RISC-V

HelenOS RISC-V Port (2)HelenOS RISC-V Port (2)

General approach
Cloning the abs32le virtual port

Changing names, endianity, word width, primitive types,
linker script and other basic definitions

Adding the new platform to the build system
Adding basic options to HelenOS.config
Adding the compiler toolchain to tools/autotool.py

Checking that everything compiles (mostly trivial)
Gradually adding actual working implementation

42Martin Děcký, FOSDEM, January 30th 2016 Porting HelenOS to RISC-V

HelenOS RISC-V Port (3)HelenOS RISC-V Port (3)

#define EM_RISCV 243 /* RISC-V */

abi/include/abi/elf.h

.org DEFAULT_MTVEC + TRAP_VECTOR_RESET
start:

/* Set up stack, create stack frame */
la sp, boot_stack + BOOT_STACK_SIZE
addi sp, sp, -16

j bootstrap

#define EM_RISCV 243 /* RISC-V */#define EM_RISCV 243 /* RISC-V */

boot/arch/riscv64/src/asm.S

43Martin Děcký, FOSDEM, January 30th 2016 Porting HelenOS to RISC-V

HelenOS RISC-V Port (3)HelenOS RISC-V Port (3)

#define EM_RISCV 243 /* RISC-V */#define EM_RISCV 243 /* RISC-V */#define ADDRESS_SPACE_HOLE_START UINT64_C(0x0000800000000000)
#define ADDRESS_SPACE_HOLE_END UINT64_C(0xffff7fffffffffff)

#define KERNEL_ADDRESS_SPACE_SHADOWED_ARCH 0

#define KERNEL_ADDRESS_SPACE_START_ARCH UINT64_C(0xffff800000000000)
#define KERNEL_ADDRESS_SPACE_END_ARCH UINT64_C(0xffffffffffffffff)
#define USER_ADDRESS_SPACE_START_ARCH UINT64_C(0x0000000000000000)
#define USER_ADDRESS_SPACE_END_ARCH UINT64_C(0x00007fffffffffff)

kernel/arch/riscv64/include/arch/mm/as.h

/** Page Table Entry. */
typedef struct {

unsigned long valid : 1; /**< Valid bit. */
unsigned long type : 4; /**< Entry type. */
unsigned long referenced : 1; /**< Refenced bit. */
unsigned long dirty : 1; /**< Dirty bit. */
unsigned long reserved : 3; /**< Reserved bits. */
unsigned long pfn : 54; /**< Physical frame number. */

} pte_t;

kernel/arch/riscv64/include/arch/mm/page.h

44Martin Děcký, FOSDEM, January 30th 2016 Porting HelenOS to RISC-V

HelenOS RISC-V Port (4)HelenOS RISC-V Port (4)

Near future
Basic kernel functionality

Interrupt/exception handling
Context switching, atomics
ETA: 18 – 24 hours (net)

Basic user space functionality
Thread-local storage
User space context switching
I/O
ETA: 18 – 24 hours (net)

45Martin Děcký, FOSDEM, January 30th 2016 Porting HelenOS to RISC-V

Current State of RISC-VCurrent State of RISC-V

User-level ISA
Version 2.0, frozen since May 6th 2014

Compressed ISA
Version 1.9, draft, to be frozen soon

Privileged ISA
Version 1.7, draft, expected to be frozen in mid-2016 or
later

Vector ISA
Only sketched so far

46Martin Děcký, FOSDEM, January 30th 2016 Porting HelenOS to RISC-V

Current State of RISC-V (2)Current State of RISC-V (2)

Holes in the specification
Memory consistency model
Application Binary Interface (ABI)
Performance counters
Hypervisor support
Formal specification (for verification)

47Martin Děcký, FOSDEM, January 30th 2016 Porting HelenOS to RISC-V

Current State of RISC-V (3)Current State of RISC-V (3)

Holes in the specification
Reference platform

Standard I/O locations (standard memory map)
Debugging support (hardware breakpoints, JTAG)
Interrupt controller, timer, RTC, reset mechanism, DMA,
IOMMU
Power management
Standard firmware (standard device tree)
Standard boot loader

48Martin Děcký, FOSDEM, January 30th 2016 Porting HelenOS to RISC-V

Current State of RISC-V (4)Current State of RISC-V (4)

Available tooling
Development tools

GNU Binutils, GCC, GDB, LLVM, clang, Go, libf
Enviroments

Newlib, glibc
Simulators / Emulators

Spike (MSIM-like), QEMU (80 % of privileged ISA),
ANGEL (JavaScript), Simics, trace32

Not upstreamed yet

49Martin Děcký, FOSDEM, January 30th 2016 Porting HelenOS to RISC-V

Current State of RISC-V (5)Current State of RISC-V (5)

Software stack
Firmware

coreboot (on Spike, upstreamed)
UEFI (a hack of EDKII on QEMU with PC peripherals)

Operating systems
Linux (with busybox), Yocto/OpenEmbedded
FreeBSD, NetBSD (to be upstreamed soon)
seL4
HelenOS (work-in-progress)

50Martin Děcký, FOSDEM, January 30th 2016 Porting HelenOS to RISC-V

Preliminary Porting ObservationsPreliminary Porting Observations

RISC-V is like a mixture of MIPS and AMD64
HelenOS generic 4-level page tables suitable for
RISC-V

RISC-V compressed access permission field in page
tables is more cumbersome than access bits

No forced platform-independent code change
expected
HelenOS and RISC-V evaluate as good match for
each other

51Martin Děcký, FOSDEM, January 30th 2016 Porting HelenOS to RISC-V

Preliminary Porting ObservationsPreliminary Porting Observations

RISC-V underspecification causes only minor
issues

Generally, the CPU specs are fine
“Reference platform” documented only in the
code of the Spike simulator

E.g. host-target interface implementing basic I/O
devices using CSRs

52Martin Děcký, FOSDEM, January 30th 2016 Porting HelenOS to RISC-V

ConclusionConclusion

RISC-V
Interesting and solid research/development effort
Great potential for both academia and industry

HelenOS
RISC-V port underway, no roadblock in sight
History of HelenOS portability improves future
portability

53Martin Děcký, FOSDEM, January 30th 2016 Porting HelenOS to RISC-V

Q&A

www.riscv.org

www.helenos.org

http://www.riscv.org/
http://www.helenos.org/

55Martin Děcký, FOSDEM, January 30th 2016 Porting HelenOS to RISC-V

Backup
slides

56Martin Děcký, FOSDEM, January 30th 2016 Porting HelenOS to RISC-V

Context of RISC-VContext of RISC-V

Not the first free ISA, but the most degrees of
freedom

OpenRISC
2000, LGPL, based on DLX, fixed ISA (not extendable)

OpenSPARC
2005, GPL, based on UltraSPARC T1 (SPARC V9), fixed
configuration (i.e. number of cores, etc.)

LaticeMico32
2006, custom open source license (a mixture of several
licenses), 32-bit

57Martin Děcký, FOSDEM, January 30th 2016 Porting HelenOS to RISC-V

Context of RISC-V (2)Context of RISC-V (2)

Not the first free ISA, but the most degrees of
freedom

MMIX
2009, a non-free open source license, Donald Knuth, John
Hennessy and Richard Sites (inspired by Knuth's MIX), 64-bit,
for educational purposes

Amber
2010, LGPL, ARMv2 compatible (32-bit)

LEON
2000-2010, LGPL + dual licensing, SPARC V8 compatible (32-bit)

58Martin Děcký, FOSDEM, January 30th 2016 Porting HelenOS to RISC-V

RISC-V in AcademiaRISC-V in Academia

Highlights of research projects based on RISC-V
Formal specification & verification

Chisel open source hardware construction language
[UC Berkeley]
Novel bespoke weak memory consistency models [MIT]

Novel manycore configurations [Gray Research]
First experimental photonic CPU [UC Berkeley]
Experimental ISA extensions [ETH Zürich]

Hardware loops
Faster ISA simulators using JIT [Cornell]

	Title Slide
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58

