

Copyright	©	2015	Oracle	and/or	its	affiliates.	All	rights	reserved.		|

MySQL	5.7	+	JSON

Morgan	Tocker	
MySQL	Product	Manager

Copyright	©	2015	Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Safe	Harbor	Statement

The	following	is	intended	to	outline	our	general	product	direction.	
It	is	intended	for	information	purposes	only,	and	may	not	be	
incorporated	into	any	contract.	It	is	not	a	commitment	to	deliver	
any	material,	code,	or	functionality,	and	should	not	be	relied	upon	
in	making	purchasing	decisions.	The	development,	release,	and	
timing	of	any	features	or	functionality	described	for	Oracle’s	
products	remains	at	the	sole	discretion	of	Oracle.

3

Copyright	©	2015	Oracle	and/or	its	affiliates.	All	rights	reserved.		|
4

Today’s	Agenda

Introduction	

Core	New	JSON	Features	

To	JSON	or	!JSON?

1

2

3

Copyright	©	2015	Oracle	and/or	its	affiliates.	All	rights	reserved.		|

MySQL	5.7	-	The	Team
• 2x	Engineering	Staff	
• 3x	QA	Staff	
• 2x	Support	Staff

5

Jan	2010 2015

Copyright	©	2015	Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Labs  
				DMRs								RCs								GA

Release	Process

6

You	are	here

Copyright	©	2015	Oracle	and/or	its	affiliates.	All	rights	reserved.		|

MySQL	5.7	is	GA!

7

Enhanced	InnoDB:	faster	online	&	bulk	
load	operations

Replication	Improvements	(incl.	multi-
source,	multi-threaded	slaves...)

New	Optimizer	Cost	Model:	greater	user	
control	&	better	query	performance

Performance	Schema	Improvements

MySQL	SYS	Schema

Performance	&	Scalability Manageability

3	X	Faster	than	MySQL	5.6

Improved	Security:	safer	initialization,	
setup	&	management

Native	JSON	Support

Copyright	©	2015	Oracle	and/or	its	affiliates.	All	rights	reserved.		| 8

	THECOMPLETELISTOFFEATURES.COM

Copyright	©	2015	Oracle	and/or	its	affiliates.	All	rights	reserved.		| 9

	THECOMPLETELISTOFFEATURES.COM

Copyright	©	2015	Oracle	and/or	its	affiliates.	All	rights	reserved.		| 10

	THECOMPLETELISTOFFEATURES.COM

Copyright	©	2015	Oracle	and/or	its	affiliates.	All	rights	reserved.		| 11

	THECOMPLETELISTOFFEATURES.COM

Copyright	©	2015	Oracle	and/or	its	affiliates.	All	rights	reserved.		|

MySQL	Enterprise	Edition

NEW!	MySQL	Enterprise	Firewall	
Block	SQL	Injecion	Ajacks	
Intrusion	Detecion		

MySQL	Enterprise	Encrypion	
Public/Private	Key	Cryptography	
Asymmetric	Encrypion	
Digital	Signatures,	Data	Validaion	

MySQL	Enterprise	Authenicaion	
External	Authenicaion	Modules	

Microson	AD,	Linux	PAMs	
MySQL	Enterprise	Audit	

User	Acivity	Audiing,	Regulatory	
Compliance	 	

12

MySQL	Enterprise	Monitor	
Changes	in	Database	Configuraions,	Users	
Permissions,	Database	Schema,	Passwords	

MySQL	Enterprise	Backup		
Securing	Backups,	AES	256	encrypion	

MySQL	Enterprise	Support	

More	informa+on	available	at	:	h2p://www.mysql.com/products/enterprise/	

Copyright	©	2015	Oracle	and/or	its	affiliates.	All	rights	reserved.		|
13

Today’s	Agenda

Introduction	

Core	New	JSON	Features	

To	JSON	or	!JSON?

1

2

3

2

1

Copyright	©	2015	Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Core	New	JSON	features	in	MySQL	5.7
1. Native	JSON	datatype	
2. JSON	Functions	
3. Generated	Columns

14

Copyright	©	2015	Oracle	and/or	its	affiliates.	All	rights	reserved.		|

The	JSON	Type

15

CREATE TABLE employees (data JSON);
INSERT INTO employees VALUES ('{"id": 1, "name": "Jane"}');
INSERT INTO employees VALUES ('{"id": 2, "name": "Joe"}');

SELECT * FROM employees;
+---------------------------+
| data |
+---------------------------+
| {"id": 1, "name": "Jane"} |
| {"id": 2, "name": "Joe"} |
+---------------------------+
2 rows in set (0,00 sec)

Copyright	©	2015	Oracle	and/or	its	affiliates.	All	rights	reserved.		|

JSON	Type	Tech	Specs
• utf8mb4	character	set	
• Optimized	for	read	intensive	workload		
• Parse	and	validation	on	insert	only		
• Fast	access	to	array	cells	by	index

16

Copyright	©	2015	Oracle	and/or	its	affiliates.	All	rights	reserved.		|

JSON	Type	Tech	Specs	(cont.)
• Supports	all	native	JSON	types	
• Numbers,	strings,	bool	
• Objects,	arrays	

• Extended	
• Date,	time,	datetime,	timestamp	
• Other

17

Copyright	©	2015	Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Advantages	over	TEXT/VARCHAR
1. Provides	Document	Validation: 
 
 
 
 

2. Efficient	Binary	Format  
Allows	quicker	access	to	object	members	and	array	
elements

18

INSERT INTO employees VALUES ('some random text');
 
ERROR 3130 (22032): Invalid JSON text: "Expect a
value here." at position 0 in value (or column)
'some random text'.

Copyright	©	2015	Oracle	and/or	its	affiliates.	All	rights	reserved.		|

JSON	Functions

19

SET @document = '[10, 20, [30, 40]]';

SELECT JSON_EXTRACT(@document, '$[1]');
+---------------------------------+
| JSON_EXTRACT(@document, '$[1]') |
+---------------------------------+
| 20 |
+---------------------------------+
1 row in set (0.01 sec)

Copyright	©	2015	Oracle	and/or	its	affiliates.	All	rights	reserved.		|

• Accepts	a	JSON	Path,	which	is	similar	to	a	selector:	

• JSON_EXTRACT	also	supports	a	short	hand: 
column_name->"$.type"

JSON_EXTRACT

20

$("#type") JSON_EXTRACT  
(column_name,	"$.type")

Copyright	©	2015	Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Using	Real	Life	Data
• Via	SF	OpenData	
• 206K	JSON	objects	  
representing	subdivision  
parcels.  
 
 
 

• Imported	from	https://github.com/zemirco/sf-city-lots-
json	+	small	tweaks

21

CREATE TABLE features ( 
id INT NOT NULL auto_increment primary key, 
feature JSON NOT NULL  
);

https://github.com/zemirco/sf-city-lots-json

Copyright	©	2015	Oracle	and/or	its	affiliates.	All	rights	reserved.		| 22

{
 "type":"Feature",
 "geometry":{
 "type":"Polygon",
 "coordinates":[
 [
 [-122.42200352825247,37.80848009696725,0],
 [-122.42207601332528,37.808835019815085,0],
 [-122.42110217434865,37.808803534992904,0],
 [-122.42106256906727,37.80860105681814,0],
 [-122.42200352825247,37.80848009696725,0]
]
]
 },
 "properties":{
 "TO_ST":"0",
 "BLKLOT":"0001001",
 "STREET":"UNKNOWN",
 "FROM_ST":"0",
 "LOT_NUM":"001",
 "ST_TYPE":null,
 "ODD_EVEN":"E",
 "BLOCK_NUM":"0001",
 "MAPBLKLOT":"0001001"
 }
}

Copyright	©	2015	Oracle	and/or	its	affiliates.	All	rights	reserved.		|

JSON	Search

23

Basic Find 
SELECT * FROM features  
WHERE feature->"$.properties.STREET" = 'MARKET'  
LIMIT 1\G
************************* 1. row *************************
 id: 12250
feature: {"type": "Feature", "geometry": {"type": "Polygon",
"coordinates": [[[-122.39836263491878, 37.79189388899312,
0], [-122.39845248797837, 37.79233030084018, 0],
[-122.39768507706792, 37.7924280850133, 0],
[-122.39836263491878, 37.79189388899312, 0]]]},
"properties": {"TO_ST": "388", "BLKLOT": "0265003",
"STREET": "MARKET", "FROM_ST": "388", "LOT_NUM": "003",
"ST_TYPE": "ST", "ODD_EVEN": "E", "BLOCK_NUM": "0265",
"MAPBLKLOT": "0265003"}}
1 row in set (0.02 sec)

Copyright	©	2015	Oracle	and/or	its	affiliates.	All	rights	reserved.		|

JSON	Search

24

Find where not exists 
SELECT * FROM features  
WHERE feature->"$.properties.STREET" IS NULL 
LIMIT 1\G
Empty set (0.39 sec)

Copyright	©	2015	Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Naive	Performance	Comparison

25

as JSON type 
SELECT DISTINCT 
 feature->"$.type" as json_extract 
FROM features;
+--------------+
| json_extract |
+--------------+
| "Feature" |
+--------------+
1 row in set (1.25 sec)

Unindexed	traversal	of	206K	documents

as TEXT type
SELECT DISTINCT  
 feature->"$.type" as json_extract 
FROM features;
+--------------+
| json_extract |
+--------------+
| "Feature" |
+--------------+
1 row in set (12.85 sec)

Explanation:	Binary	format	of	JSON	type	is	very	efficient	at	searching.	
Storing	as	TEXT	performs	over	10x	worse	at	traversal.

Using	short	cut	for		
	JSON_EXTRACT.

Copyright	©	2015	Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Introducing	Generated	Columns

26

id my_integer my_integer_plus_one

1 10 11

2 20 21

3 30 31

4 40 41

CREATE TABLE t1 (
 id INT NOT NULL PRIMARY KEY auto_increment,
 my_integer INT,
 my_integer_plus_one INT AS (my_integer+1)
);
UPDATE t1 SET my_integer_plus_one = 10 WHERE id = 1;
ERROR 3105 (HY000): The value specified for generated
column 'my_integer_plus_one' in table 't1' is not
allowed.

Column	automatically	
maintained	based	on	your	
specification.

	Read-only	of	course

Copyright	©	2015	Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Generated	Columns	Support	Indexes!

27

ALTER TABLE features ADD feature_type VARCHAR(30) AS (feature-
>"$.type");
Query OK, 0 rows affected (0.01 sec)
Records: 0 Duplicates: 0 Warnings: 0

ALTER TABLE features ADD INDEX (feature_type);
Query OK, 0 rows affected (0.73 sec)
Records: 0 Duplicates: 0 Warnings: 0

SELECT DISTINCT feature_type FROM features;
+--------------+
| feature_type |
+--------------+
| "Feature" |
+--------------+
1 row in set (0.06 sec)

From	table	scan	on	206K	documents	to	index	scan	on	206K	materialized	values

Down	from	1.25	sec	
to	0.06	sec

Creates	index	only.	
Does	not	modify	
table	rows.

Meta	data	change	
only	(FAST).	Does	
not	need	to	touch	
table.

Copyright	©	2015	Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Generated	Columns	(cont.)
• Used	for	“functional	index”	
• Available	as	either	VIRTUAL	(default)	or	STORED: 
 
 
 

• Both	types	of	computed	columns	permit	for	indexes	to	
be	added.

28

ALTER TABLE features ADD feature_type varchar(30) AS
(feature->"$.type") STORED;
Query OK, 206560 rows affected (4.70 sec)
Records: 206560 Duplicates: 0 Warnings: 0

Copyright	©	2015	Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Indexing	Options	Available

29

STORED VIRTUAL
Primary	and	Secondary	

BTREE,	Fulltext,	GIS	

Mixed	with	fields	

Requires	table	rebuild	

Not	Online

Secondary	Only	

BTREE	Only	

Mixed	with	fields	

No	table	rebuild	

INSTANT	Alter	

Faster	Insert

Bottom	Line:	Unless	you	need	a	PRIMARY	KEY,	FULLTEXT	or	GIS	index	
VIRTUAL	is	probably	better.

Copyright	©	2015	Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Unquote	JSON	String

SELECT
 DISTINCT JSON_UNQUOTE(feature->"$.type")  
 as feature_type  
FROM features;
+-----------------+
| feature_type |
+-----------------+
| Feature |
+-----------------+
1 row in set (1.22 sec)

30

Copyright	©	2015	Oracle	and/or	its	affiliates.	All	rights	reserved.		|

JSON	Path	Search
• Provides	a	novice	way	to	know	the	path.		To	retrieve	via: 
[[database.]table.]column->"$<path	spec>"

31

SELECT JSON_SEARCH(feature,  
 'one', 'MARKET') AS  
 extract_path  
FROM features  
WHERE id = 121254;
+-----------------------+
| extract_path |
+-----------------------+
| "$.properties.STREET" |
+-----------------------+
1 row in set (0.00 sec)

SELECT 
feature->"$.properties.STREET"
 AS property_street 
FROM features 
WHERE id = 121254;
+-----------------+
| property_street |
+-----------------+
| "MARKET" |
+-----------------+ 
1 row in set (0.00 sec)

Copyright	©	2015	Oracle	and/or	its	affiliates.	All	rights	reserved.		|

JSON	Array	Creation

32

SELECT JSON_ARRAY(id,  
 feature->"$.properties.STREET",  
 feature->'$.type") AS json_array 
FROM features ORDER BY RAND() LIMIT 3;
+-------------------------------+
| json_array |
+-------------------------------+
| [65298, "10TH", "Feature"] |
| [122985, "08TH", "Feature"] |
| [172884, "CURTIS", "Feature"] |
+-------------------------------+
3 rows in set (2.66 sec)

Copyright	©	2015	Oracle	and/or	its	affiliates.	All	rights	reserved.		|

JSON	Object	Creation

33

SELECT JSON_OBJECT('id', id,  
 'street', feature->"$.properties.STREET",  
 'type', feature->"$.type"  
) AS json_object  
FROM features ORDER BY RAND() LIMIT 3;
+--+
| json_object |
+--+
| {"id": 122976, "type": "Feature", "street": "RAUSCH"} |
| {"id": 148698, "type": "Feature", "street": "WALLACE"} |
| {"id": 45214, "type": "Feature", "street": "HAIGHT"} |
+--+
3 rows in set (3.11 sec)

Copyright	©	2015	Oracle	and/or	its	affiliates.	All	rights	reserved.		|

JSON_REPLACE

34

SELECT JSON_REPLACE(feature, '$.type',
JSON_ARRAY('feature', 'bug')) as json_object FROM features
LIMIT 1;
+--+
| json_object |
+--+
| {"type": ["feature", "bug"], "geometry": {"type": ..}} |
+--+

Copyright	©	2015	Oracle	and/or	its	affiliates.	All	rights	reserved.		|

• 5.7	supports	functions	to	CREATE,	SEARCH,	MODIFY	and	
RETURN	JSON	values:

JSON	Functions

35

JSON_ARRAY_APPEND()	

JSON_ARRAY_INSERT()	

JSON_ARRAY()	

JSON_CONTAINS_PATH()	

JSON_CONTAINS()	

JSON_DEPTH()	

JSON_EXTRACT()	

JSON_INSERT()	

JSON_KEYS()	

JSON_LENGTH()	

JSON_MERGE()	

JSON_OBJECT()	

JSON_QUOTE()	

JSON_REMOVE()	

JSON_REPLACE()	

JSON_SEARCH()	

JSON_SET()	

JSON_TYPE()	

JSON_UNQUOTE()	

JSON_VALID()

https://dev.mysql.com/doc/refman/5.7/en/json-functions.html

https://dev.mysql.com/doc/refman/5.7/en/json-functions.html

Copyright	©	2015	Oracle	and/or	its	affiliates.	All	rights	reserved.		|

JSON	Comparator

36

SELECT CAST(1 AS JSON) = 1;
+---------------------+
| CAST(1 AS JSON) = 1 |
+---------------------+
| 1 |
+---------------------+
1 row in set (0.01 sec)  
 
SELECT CAST('{"num": 1.1}' AS JSON) = CAST('{"num": 1.1}' AS JSON);
+---+
| CAST('{"num": 1.1}' AS JSON) = CAST('{"num": 1.1}' AS JSON) |
+---+
| 1 |
+---+
1 row in set (0.00 sec)

JSON	value	of	1	equals	1

JSON	Objects	Compare

Copyright	©	2015	Oracle	and/or	its	affiliates.	All	rights	reserved.		|
37

Today’s	Agenda

Introduction	

Core	New	JSON	Features	

To	JSON	or	!JSON?

1

22

1

2

3

Copyright	©	2015	Oracle	and/or	its	affiliates.	All	rights	reserved.		|

JSON	or	Column?
• Up	to	you!	
• Advantages	to	both	approaches

38

Copyright	©	2015	Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Storing	as	a	Column
• Easier	to	apply	a	schema	to	your	application	
• Schema	may	make	applications	easier	to	maintain	over	
time,	as	change	is	controlled;	
• Do	not	have	to	expect	as	many	permutations	
• Allows	some	constraints	over	data

39

Copyright	©	2015	Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Storing	as	JSON
• More	flexible	way	to	represent	data	that	is	hard	to	
model	in	schema;	
• Imagine	you	are	a	SaaS	application	serving	many	
customers	
• Strong	use-case	to	support	custom-fields	
• Historically	this	may	have	used	Entity–attribute–value	
model	(EAV).		Does	not	always	perform	well

40

Copyright	©	2015	Oracle	and/or	its	affiliates.	All	rights	reserved.		|

JSON	(cont.)
• Easier	denormalization;	an	optimization	that	is	
important	in	some	specific	situations	
• No	painful	schema	changes*	
• Easier	prototyping	
• Fewer	types	to	consider	
• No	enforced	schema,	start	storing	values	immediately

41

*	MySQL	5.6	has	Online	DDL.		This	is	not	as	large	of	an	issue	as	it	 
		was	historically.

Copyright	©	2015	Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Schema	+	Schemaless

42

SSDs	have	capacity_in_gb,	CPUs	have	a	core_count.		These	attributes	
are	not	consistent	across	products.

CREATE TABLE pc_components (
 id INT NOT NULL PRIMARY KEY,
 description VARCHAR(60) NOT NULL,
 vendor VARCHAR(30) NOT NULL,
 serial_number VARCHAR(30) NOT NULL,
 attributes JSON NOT NULL
);

Copyright	©	2015	Oracle	and/or	its	affiliates.	All	rights	reserved.		|

SSDs
• Compression	is	a	great	fit	requirement	for	modern	
storage	
• Allows	negation	of	new	constraint;	lower	capacity

43

Hard	Drive SSD

Capacity High Low

IOPS	Available Low High

Sequential	IO	Performance Good Very	Good

Random	IO	Performance Bad Very	Good

Lifetime Good Maximum	Read/Write	Cycles

Copyright	©	2015	Oracle	and/or	its	affiliates.	All	rights	reserved.		|

JSON	Documents
• May	compress	well	
• Schemaless	means	that	the	keys	are	repeated	in	each	
of	the	documents	

• Repetition	improves	compression	performance	
• MySQL	5.7	also	supports	32KB	and	64KB	pages	
(improved	compression)

44

Copyright	©	2015	Oracle	and/or	its	affiliates.	All	rights	reserved.		|

MySQL	5.7	Page	Compression
• InnoDB	has	had	compression	since	5.1-plugin	
• MySQL	5.7	introduces	a	new,	simpler	version	of	page	
compression	
• It	relies	on	punch-hole	support

45

Copyright	©	2015	Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Compression	Performance	(16K	Page)

46

SELECT name, ((file_size-allocated_size)*100)/
file_size as compressed_pct from
information_schema.INNODB_SYS_TABLESPACES WHERE
name like 'test/features';
+---------------+----------------+
| name | compressed_pct |
+---------------+----------------+
| test/features | 59.2634 |
+---------------+----------------+
1 row in set (0.01 sec)

Using	real-life	data	
set	from	earlier

Copyright	©	2015	Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Additional	Features
• Views	and	triggers	can	be	used	migrate	between	JSON	
and	top	level	columns	
• MySQL	5.7	supports	multiple	triggers	per	table	event!	

• 5.7	also	supports	server-side	query	rewrite

47

Copyright	©	2015	Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Road	Map
• In-place	partial	update	of	JSON/BLOB	(performance)	
• Partial	streaming	of	JSON/BLOB	(replication)	
• Full	text	and	GIS	index	on	virtual	columns	
• Currently	works	for	"STORED"	

• Multi-value	Index

48

Copyright	©	2015	Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Resources
• http://mysqlserverteam.com/	
• http://mysqlserverteam.com/tag/json/	
• https://dev.mysql.com/doc/refman/5.7/en/mysql-
nutshell.html	
• http://dev.mysql.com/doc/relnotes/mysql/5.7/en/	
• https://dev.mysql.com/doc/refman/5.7/en/json.html	
• https://dev.mysql.com/doc/refman/5.7/en/json-
functions.html	
• http://www.thecompletelistoffeatures.com

49

http://mysqlserverteam.com/
http://mysqlserverteam.com/tag/json/
https://dev.mysql.com/doc/refman/5.7/en/mysql-nutshell.html
http://dev.mysql.com/doc/relnotes/mysql/5.7/en/
https://dev.mysql.com/doc/refman/5.7/en/json.html
https://dev.mysql.com/doc/refman/5.7/en/json-functions.html
http://www.thecompletelistoffeatures.com

Copyright	©	2014	Oracle	and/or	its	affiliates.	All	rights	reserved.		|
50

