

Managing Python Packages
with Pulp

Presented by:

Michael Hrivnak
Principal Software Engineer

mhrivnak@redhat.com

@michael_hrivnak

http://www.pulpproject.org

Distributing software is a messy business.

What is Pulp?

Manage repositories of content

Supports many content types

Pull-through cache

OSS under GPL2

https://github.com/pulp

Python web app

Create New Repositories

Create a new repository in Pulp

Sync content from a remote repo, manually or
on a schedule

Upload your own content

Copies are cheap

Publish Your Repository

Mix and match content, then publish

Publish can mean many things

$ pulp-admin python repo create --repo-id pypi --feed
https://pypi.python.org/ --package-names numpy,scipy

Repository [pypi] successfully created

$ pulp-admin python repo sync run --repo-id pypi
+--+
 Synchronizing Repository [pypi]
+--+

This command may be exited via ctrl+c without affecting the
request.

Downloading and processing metadata.
[-]
... completed

Downloading and processing Python packages.
[==] 100%
30 of 30 items
... completed

Task Succeeded

$ pip install -i
http://pulp.example.com/pulp/python/web/my_own_pypi/simple/
pulp-python-plugins
Downloading/unpacking pulp-python-plugins
 Downloading pulp-python-plugins-0.0.0.tar.gz
 Running setup.py egg_info for package pulp-python-plugins

Installing collected packages: pulp-python-plugins
 Running setup.py install for pulp-python-plugins

Successfully installed pulp-python-plugins
Cleaning up...

Content Types

RPM family

Docker Images

Puppet Modules

Python Packages

OSTree

Regular Files

Debian Packages (community)

NPM?

Who uses Pulp?

Red Hat Release Engineering

Public Clouds

Katello / Red Hat Satellite 6

Community

Use Case: Mirror Python Packages

Sync packages from PyPI to a local repository

Add or remove packages as desired

Retain old versions

Control which versions appear together

Use Case: Dev / Test / Production

Sync content into a development repository

“Promote” by copying to a Test repository, and
then to a Production repository

Useful for testing upstream content, such as
new RHEL point releases

Dev ProdTest

Distributed Application

REST API

Content served via HTTP

Worker Processes for Async Jobs

HTTPD

Workers

DB

AMQP

Publish!

Extensible

Standard ways to support new content types

How does content flow in?

How does content flow out?

Plugins

Type Definition

Model Class (using mongoengine)

Importer

Used to pull in upstream content

One per repository

Distributor

Used to publish content

Many per repository

core

importer

distributor

Integration

REST API

Events published to AMQP topic exchange

HTTP callbacks

Pull-through Cache

Available in 2.8.0 Beta

Adds metadata to database
without downloading files

Retrieves files on-demand or in
the background

yum pulp squid streamer remote
repo

filesystem

Documentation

http://www.pulpproject.org/docs/

Stickers!

Questions?

Michael Hrivnak

mhrivnak@redhat.com

@michael_hrivnak

http://www.pulpproject.org

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 19
	Slide 20
	Slide 22
	Slide 23
	Slide 24

