
Status of safety-
critical FOSS

January 31, 2016



Licensed under Creative Commons Attribution-ShareAlike 4.0 
International License
http://creativecommons.org/licenses/by-sa/4.0/Creative Commons 

Jeremiah C. Foster
(Carbon Based Life Form)

Twitter: @miahfost

http://creativecommons.org/licenses/by-sa/4.0/Creative
http://creativecommons.org/licenses/by-sa/4.0/Creative


Overview

● Safety-critical for FOSS folks
● What are the challenges?
● Can FOSS become "safety-critical"? 

● What are the implications of using copyleft licenses in safety-critical software? 

● What is the roadmap? 

● What resources to engage in the discussion is available?

I'd like very much to engage the audience on the subject matter, particularly on the dynamic of 

copyleft and how it may provide a greater level of transparency than proprietary software not just 

into the actual code but in the entire process and supply chain and hardware. 



What is safety-critical?
Thus spake Wikipedia;

Born from industries with a need for process control, it’s a “basic functional safety standard applicable 
to all kinds of industry.” Functional safety is part of the overall safety relating to equipment and to the 
control of equipment which depends on the correct functioning of the safety-related system. 

Functional safety relies on active systems.

● The detection of smoke by sensors and the ensuing intelligent activation of a fire suppression 
system

● The activation of a level switch in a tank containing a flammable liquid, when a potentially 
dangerous level has been reached, which causes a valve to be closed to prevent further liquid 
entering the tank and thereby preventing the liquid in the tank from overflowing.



"When designed and implemented 
correctly, software is often the first, 
and sometimes the best, hazard 
detection and prevention 
mechanism in the system." 
 -- NASA

Photo credit: Wikipedia https://commons.wikimedia.org/wiki/File:Nuclear_Ship_Savannah_-
_Reactor_Control_Room_-_Center_and_Left_Panels.jpg



Standardization, there’s lots of it

IEC 61508 ● One standard to rule them all
● "Making electrotechnology work for you"

ISO 26262

IEC 61513 ● Provides requirements and recommendations for the instrumentation 
and control for systems important to safety of nuclear power plants.

IEC 62061 ● Machinery specific implementation of IEC 61508

● Functional safety features form an integral part of each automotive 
product development phase, ranging from the specification, to design, 
implementation, integration, verification, validation, and production 
release.



Is it even possible to ‘certify’ GNU/Linux at a 
safety-critical level?

Safety-critical software is usually reasoned about in Safety Integrity Levels, or 
SIL. Systems get certified at a given SIL. A SIL rating describes the chance of 
failure, or the “Probability of Failure on Demand” (PFD)

Safety Integrity 
Level

Safety Probability of Failure 
on Demand

Risk Reduction 
factor

SIL 4 > 99.99% 0.001% to 0.01% 100,000 to 10,000

SIL 3 99.9% to 99.99% 0.01% to 0.1% 10,000 to 1,000

SIL 2 99% to 99.9% 0.1 to 1% 1,000 to 100

SIL 1 90% to 99% 1 to 10% 100 to 10



OSADL approach -- SIL2LinuxMP 

A safety-critical system certified for ASIL B use:

“The SIL2LinuxMP project aims at the certification of the base components of an embedded 
GNU/Linux RTOS running on a single-core or multi-core industrial COTS computer board. Base 
components are boot loader, root filesystem, Linux kernel and C library bindings to access the 
Linux kernel.“

● This might be a Debian based system, though Yocto has been discussed
● No userland components except for some small system tools for inspection, 

etc.
● Build toolchain *is* included



An example of what the stack might look like 
and where the current areas of responsibility a 
delegated.

Linux Foundation has raised funds for 
bringing in PREEMPT_RT into mainline and 
OSADL will join the LF as a “gold” member of 
the RTL group.

Please see: https://wiki.linuxfoundation.org/realtime/start

http://www.linuxfoundation.org/collaborate/workgroups/real-
time

https://www.osadl.org/Single-View.111+M5c0795180e5.0.html

https://wiki.linuxfoundation.org/realtime/start
http://www.linuxfoundation.org/collaborate/workgroups/real-time
http://www.linuxfoundation.org/collaborate/workgroups/real-time
http://www.linuxfoundation.org/collaborate/workgroups/real-time
https://www.osadl.org/Single-View.111+M5c0795180e5.0.html
https://www.osadl.org/Single-View.111+M5c0795180e5.0.html


Nicholas McGuire’s work in OSADL
Talk from June 2015 

- The main reason for looking at linux is that most safety systems do not have multi-core support. You 
cannot have concurrent kernel process in multiple cores with the tiny, safety oriented Real Time OSes. 
Also, surprisingly, RTOSes don't seem to have the same quality of the security standards, there Linux is 
advanced.

- The Linux system that OSADL is looking at roughly 350,000 lines of code
- Linux is surprisingly close to POSIX which turns out to be important because the key issue is not 

necessarily "perfect" code, it's the design process and the ability to fix errors in the design phase, your 
design process is key.

- Dangerous to drive safety qualification by features and functionality. Select qualifiable components 
instead, a bit of a backwards process.

- Because the LTSI kernel change rates are relatively low they are good targets for qualification
- Known problems can be addressed - Open Source / open processes and a responsive community is why we 

can address these issues in GNU/Linux.
- ~1000 patches from SIL2linuxMP over one year
- Linux kernel process almost exactly fits ISO 9001 (Quality Management)



Concerns

GPLv3, § 6

Installation information 
requires disclosure of 
secret encryption keys 
used to sign the boot 
image.

Inability to comply

Embedded systems will 
not (cannot?) comply due 
to safety requirements. 
(End users should not be 
modifying software on 
safety-critical systems 
due to systemic and 
potentially catastrophic 
risk.)

How to resolve?

● Exception to § 6
● “Regulation”
● Use of GPLv2 

software, i.e. older 
versions

● “Marketing and 
Education”



Premise: Copyleft may be an 

effective mechanism to ensure a 
necessary level of transparency as 
well as adequate protection for 
source code that is expensive to 
produce and maintain


