Motivation 000	Architecture 0	PCI–Device assignment 0	Architecture I/O 0	Implementation I/O	Summary 00

Real-Time Cloud

FOSDEM 2016 Brussels / 30 & 31 January 2016

Henning Schild

Siemens henning.schild@siemens.com

Motivation		PCI–Device assignment	Architecture I/O	Implementation I/O	Summary
000					

Motivation

- Communication systems
 - media streaming, switching
- Trading systems
 - stocks, goods
- Control systems
 - industry, healthcare, transportation
- All in the Cloud
 - Consolidation
 - Hardware standardization
 - Simpler maintenance
 - Fast fail—over

Motivation ○●○		PCI–Device assignment 0	Architecture I/O 0	Implementation I/O 00	Summary 00

Starting point

- we know RT–VMs with KVM are possible
- Preempt–RT host
- start them with hand-crafted scripts
- I/O (NICs) through device assignment
- a few hosts with a couple of VMs each

Does not scale!

•

- scripts are hard to maintain
 - manual resource assignment
 - error prone
- #NICs limits #VMs

\rightarrow We want that in the Cloud!

Motivation 00●	Architecture 0	PCI–Device assignment 0	Architecture I/O 0	Implementation I/O 00	Summary 00
Targe	t				

- hundreds of VMs, both RT and best-effort
- many networks, again RT and non-RT
- local deployment needs to be possible
 - not somewhere far away
 - close to the process that should be controlled
 - it is all about CPU + networking latency
- flexible management, multiple users, accounting etc.

Cloud–grade, RT–capable VM management stack required \rightarrow Openstack

- already broadly used for private clouds
- good integration with KVM

Motivation	Architecture	Implementation	PCI–Device assignment	Architecture I/O	Implementation I/O	Summary
	•					

Basic Architecture

Motivation 000		Implementation • • •	PCI-Device assignment 0	Architecture I/O 0	Implementation I/O 00	Summary 00
Compute No	de					

- Preempt-RT as kernel
 - configuration and tuning according to https://rt.wiki.kernel.org
 - rt thread throttling
 - scheduling priorities: kworker, ksoftirq, rcu
 - interrupt affinities, power management
- isolcpus
 - for vCPUs
 - hyperthread siblings disabled
 - further isolated with cpuset.cpu_exclusive
- sufficient non-isolated CPUs
 - QEMU event threads
 - Linux base system, libvirtd, nova, neutron, ...

Motivation 000	Implementation • • •	PCI–Device assignment 0	Architecture I/O 0	Implementation I/O 00	Summary 00
libvirt					

- only executes higher layers commands, no policy
- foundation Openstack builds on
- for RT-vCPUs all required controls upstream (>= 1.2.13)
 - CPU affinity setting for QEMU-threads (*cgroups/cpusets*)
 - scheduling parameter setting (policy, priority)
 - memory pinning (mlockall())

Issues with CPU affinity setting

- cgroup operation ordering problems
- causes disturbance and starvation
- mostly solved in prototype
- WiP together with upstream

Motivation 000	Implementation O O O	PCI–Device assignment 0	Architecture I/O 0	Implementation I/O 00	Summary 00
Openetack					

- several features already available
 - vCPU affinity setting
 - dedicated pCPUs
- RT-blueprint was available
 - o introduced flavor property hw:cpu_realtime
 - memory pinning
 - vCPU scheduling policy and priority
 - implementation by Red Hat
 - similar implementation by Siemens

Deficits

- scheduling policy/priority were hard-coded
- second CPU mask required in nova, differentiate between RT and non-RT pCPUs for Openstack and other pCPUs

Corrected version merged

• about 2 weeks ago, implemented by Red Hat

Motivation	Architecture	PCI–Device assignment	Architecture I/O	Implementation I/O	Summary
000	0	●	0	00	00

PCI–Device assignment

- should be easy to do
 - libvirt and Openstack support it
- shortest possible way from guest to pNIC
- have to choose pNICs that the guest supports
- does not scale

Issues

- Openstack lets you choose devices by device- and vendor-IDs
- have several NICs with matching IDs on different networks?
- problem is known upstream

Solution

 QEMU-wrapper script to rewrite arguments based on a name passed down by Openstack

Motivation	Architecture	Implementation	PCI–Device assignment	Architecture I/O	Implementation I/O	Summary
				•		

Architecture with I/O

Motivation 000			PCI-Device assignment 0	Architecture I/O 0	Implementation I/O ●○	Summary 00	
DPDK-based network virtualization							

- get host kernel out of the loop
 - Ethernet, IP-stack, *-tables
 - device drivers
- implement RT-Switch with DPDK
 - uio device driver for all common NICs
 - Ethernet–stack
 - Real-Time scheduling parameters
 - small packet bursts and polling for low latency
- short way from guest to software-switch
 - shared ring memory with switch vhost-user
 - signaling via socket, but mostly polling

Motivation	Architecture		PCI–Device assignment	Architecture I/O	Implementation I/O	Summary		
000	0		0	0	○●	00		
DPDK-based network virtualization								

- requires another set of RT-pCPUs
 - can now be modeled in Nova
 - isolated against cgroup problems with cpuset.cpu_exclusive
- polling on high priority has potential to starve others
 - helps you find tuning problems, affinity bugs in libvirt, ...
- guests need virtio device driver

Issues

- 1 Openstack wants to fully manage networks (IPs, DNS, topology)
- 2 Openstack could not set memory backing store shared might be solved upstream

Solution

- $1 \,$ implemented unmanaged network–class
- 2 QEMU-wrapper script to change arguments

Motivation	Architecture	PCI–Device assignment	Architecture I/O	Implementation I/O	Summary
000	0	0	0	00	●0

Summary and Outlook

- Real-Time Cloud is feasible
- prototype available
- still requires good understanding of the stack
 - a lot was already there, still configuration is not trivial
 - found some issues on the way
 - partially fixed upstream
 - ongoing work
- open issues
 - how to properly protect your isolcpus from cgroups
 - cgroups2 are coming soon . . .
 - RT-network integration with neutron, Open vSwitch
 - PCI-device assignment based on bdf?
 - share=on for *virtio* memory backing store ?

Motivation 000		PCI–Device assignment 0	Architecture I/O 0	Implementation I/O 00	Summary ○●

Except where otherwise noted, this work is licensed under Creative Commons Attribution Share-Alike 4.0 International License

http://creativecommons.org/licenses/by-sa/4.0/