Scheduling in The Age of Virtualization

Dario Faggioli dario.faggioli@citrix.com

Bruxelles - 30th of January, 2016

Welcome

- ► Hello, my name is Dario
- ▶ I'm with Citrix since 2011 (in the Xen Platform Team)

Outline

CPU Scheduling in the Virtualization World:

- hypervisor and guest scheduler: same or different?
- hypervisor scheduler: what are the key features?
- hypervisor and guest scheduler: independent or interactive?

Scheduling in The Virtualization World

Virtualization means 2 schedulers always running:

- ▶ hypervisor level: schedules virtual CPUs over physical CPUs
- guest OS level: schedules processes over virtual CPUs

Implemented by:

- two instances of the same scheduler (Linux/KVM)
- two different schedulers (Xen, VMWare, Hyper-V)

Same or different: What's better?

Opinions...

Same scheduler approach (Linux/KVM):

- benefit from feature and tuning done by others for other reasons pro
- (virtualization) specific tweaks may not always be welcome contra

Different schedulers approach (Xen):

- developing a good scheduler is entirely on you contra
- virtualization specific tricks could be added at leisure pro

My opinion: I like the Xen way better

Same or different: What's better?

Opinions...

Same scheduler approach (Linux/KVM):

- benefit from feature and tuning done by others for other reasons pro
- (virtualization) specific tweaks may not always be welcome contra

Different schedulers approach (Xen):

- developing a good scheduler is entirely on you contra
- virtualization specific tricks could be added at leisure pro

My opinion: I like the Xen way better would have you ever guessed? :-)

Same or different: What's better? (cont.)

There's a story that could be an interesting example. It talks about co-scheduling, but not right now...

What Makes a Good Hypervisor Scheduler?

One thing is **key**:

fairness: if the VMs are equal, they should get equal service in term physical CPU time. If they are not equal, weighted fairness.

A couple of other wish list things:

- limit: this VM should not run more than XX% of physical CPU time.
- reservation: whatever the load is, this VM should never get less than YY% physical CPU time.

Where do Linux/KVM and Xen Stand?

	Linux/KVM	Xen
Wght Fairness	CFS (Linux 2.6.23)	Forever
Limit	CFS BW Control (Linux 3.2)	Credit (2006)
Reservation	No	Planned for Credit2

Scheduler Example

Wakeup latency test: measure difference between desired and actual wakeup time (min, avg, max).

	Min	Avg	Max
no other load			
KVM	25.5	30.3	41.8
XEN	68.3	117.3	174.3
load on host/dom0			
KVM	23.6	345.5	17785.3
Xen	28.3	81.3	1145.5
load on other VM			
KVM	36.5	336.8	7423.5
Xen	28.5	90.5	1131.5

Should Hypervisor and Guest OS "Talk to Each O's

There is a word: Paravirtualization

- let's not go that far (today!)
- maybe just some "enlightenment"

Example 1: Topology Based Scheduler Load Balary

Linux scheduler (in a guest) takes topology into account when load balancing.

- vCPUs wander around among pCPUs: the hypervisor scheduler moves them!
- ightharpoonup at time t_1 vCPU 1 and vCPU 3 run on pCPUs that are SMT-siblings
- ▶ at time $t_2! = t_1 \dots$ Not anymore!

"Hey, you're virtualized, please do not make assumptions on topology!"

Example 1: Topology Based Scheduler Load Balancing (cont.)

We're down at doing at, and it looks promising...

	Iperf (VMs to host) % incr. thput.
Sequential host	+3.976608%
load (1 VM)	+3.97000076
Small host load	+3.903162%
Medium host load	+7.753479%
Large host load	+2.152059%
Full host load	+6.830207%
Overloaded host	+5.257887%
Overwhelmed host	+3.502063%

Example 2: Generic Load Balancing Behaviour

When does Linux's scheduler's load balancer triggers?

- configurable (scheduling domains' flags)
- each architecture benchmarks and tune behaviour for best perf.
- virtualized guests (Xen/KVM)? Just what x86 does...

exec1 benchmark from UnixBench. Default vs customised set of flags (removed SD_BALANCE_EXEC):

Table: My caption

	DEFAULT	CUSTOM
KVM	675.3	1051.6
XEN	779.9	1009.8

Example 2: Generic Load Balancing Behaviour (con

Why? Traces (Xen):
'-' CPU is idle, '|' CPU is doing something, 'x' event happening on CPU

```
** CUSTOM **
                                                               ** DEFAULT **
                       dlv0 dlv0 running->blocked
                                                                                      dlv0 dlv0 running->blocked
                       dlvl dlvO blocked->runnable
                              dlv0 woke up
                                                                                              tickling cpu 16
                              tickling cpu 16
                                                                                       dlvl dlvO blocked->runnable
                       d?v? dlv0 runnable->running
                                                                                      d?v? dlv0 runnable->running
                              context switch dlvl --> idle
                                                                                              context switch dlvl --> idle
                       dlv0 dlv0 runnina->blocked
                                                                                      dlvl dlvl running->blocked
                              dlvl choose cpu 23
                       dlvl dlvl running->running
                                                                                             tickling cpu 23
                              dlvl choose cpu 23
                       dlyl dlyO blocked->runnable
                                                                                      d?v? dlvl runnable->running
                              tickling cpu 16
                              dly0 woke up
                                                                                             context switch dlv0 --> idle
                       d?v? dlv0 runnable->running
                                                                                      dlv0 dlv0 running->blocked
                              dlv0 blocked
                                                                                              dlv0 woke up
                       dlv0 dlv0 running->blocked
                                                                                              tickling cpu 16
                                                                                      dlvl dlv0 blocked->runnable
                       dlvl dlvO blocked->runnable
                              tickling cpu 16
                                                                                      d?v? dlv0 runnable->running
                              d1v0 woke up
                                                                                              dlvl blocked
                       d?v? dlv0 runnable->running
                                                                                              context switch dlvl --> idle
                              dlv0 blocked
                                                                                      dlvl dlvl running->blocked
                              context switch dlv0 --> idle
                       dlv0 dlv0 running->blocked
                              dlvl choose cpu 23
                                                                                      dlv0 dlv1 blocked->runnable
                       dlvl dlvO blocked->runnable
                                                                                      d?v? dlvl runnable->running
                              tickling cpu 16
                              dlv0 woke up
```

Example 2: Generic Load Balancing Behaviour (cont.)

Why? Traces (Linux):

I	execl	20535	[000]	8054.096031
•	swapper	0	[001]	8054.112056
	ksoftirgd/0	3	[000]	8054.123051
	swapper	0	[001]	8054.129065
	swapper	0	[001]	8054.150057
	execl	20535	[000]	8054.158031
	swapper	0	[001]	8054.168063
	swapper	0	[001]	8054.187057
	ksoftirqd/0	3	[000]	8054.189035
	swapper	0	[001]	8054.206052
	execl	20535	[000]	8054.218031
	swapper	0	[001]	8054.220057
	swapper	0	[001]	8054.240067
	ksoftirqd/0	3	[000]	8054.244063
	swapper	0	[001]	8054.259062
	execl	20535	[000]	8054.271031
	swapper	0	[001]	8054.279057
	swapper	0	[001]	8054.300051
	ksoftirqd/0	3	[000]	8054.302036
	swapper	0	[001]	8054.316053
	execl	20535	[000]	8054.334031
	swapper	0	[001]	8054.336053
	swapper	0	[001]	8054.355057
	ksoftirqd/0	3	[000]	8054.364065
	swapper	0	[001]	8054.373054
	swapper	0	[001]	8054.393053
	execl	20535	[000]	8054.394033

			(1.1)
execl	20668	[000]	8708.118084
swapper	0	[001]	8708.118100
migration/0	9	[000]	8708.118586
execl	20668	[001]	8708.118820
swapper	0	[001]	8708.119096
swapper	0	[000]	8708.119342
execl	20668	[001]	8708.119815
execl	20668	[000]	8708.120083
migration/l	10	[001]	8708.120341
migration/0	9	[000]	8708.120584
swapper	0	[001]	8708.121024
migration/l	10	[001]	8708.121335
swapper	0	[000]	8708.121339
execl	20668	[000]	8708.122085
swapper	0	[001]	8708.122099
migration/0	9	[000]	8708.122586
execl	20668	[001]	8708.122818
swapper	0	[001]	8708.123096
swapper	0	[000]	8708.123343
	20668	[001]	8708.123816
	20668		8708.124080
migration/l	10	[001]	8708.124338
migration/0	9	[000]	8708.124583
swapper		[001]	8708.125024
migration/l		[001]	8708.125336
swapper	0	[000]	8/08.125340
execl	20668	[000]	8708.126074

Thanks again,

Paravirtualization! Questions?