
MyRocks 
RocksDB storage engine for MySQL

Mark Callaghan
Member of Technical Staff, Facebook



• Features 
• Performance 
• Usage 
• Community

MySQL is thriving



• Best space efficiency 
• Better write efficiency 
• Good read efficiency 
• Effective with SSD & disk

Why MyRocks?

For an important web-scale workload 
• Uses 50% the space vs compressed InnoDB 
• Uses 25% the space vs InnoDB 
• Write rate to storage is 10% the InnoDB rate



• You are using InnoDB 
• The database is larger than RAM 

Goal is performance similar to InnoDB with much 
better storage efficiency. Verified with production and 
benchmarks.

When to consider MyRocks?



Achieved in 2016 
• Efficient performance 
• Deployed 
• Started ports to Percona & 

MariaDB Server 

Progress
Planned for 2017 
• Better documentation 
• More production deployments 
• Usable in Percona & MariaDB Server 
• Performance improvements & results 
• Features



Space efficiency 
• Fragmentation 
• Fixed page size 
• Per-row metadata 
• Key prefix encoding

Efficiency: RocksDB vs a B-Tree
Write efficiency 
• Uses more space = more data to write 
• Working set larger than cache 
• sizeof(page) / sizeof(row) 
• Double write buffer (InnoDB)

Read efficiency 
• More data in cache & less data to cache 
• Bloom filter 
• Spend less on writes, use more for reads 
• Read-free index maintenance



• Fixed - get good enough performance with default my.cnf 
• Set these to get great performance 

rocksdb_block_cache_size 
rocksdb_max_background_compactions

Problems: my.cnf options

Insert benchmark inserts/
second

queries/
second

default 13979 11986

block cache 13610 44604

block cache &
background threads 86501 44581



• Visible with concurrent, long range scans 
• Fixed: problem was memory system contention

Problems: long range scans

Sysbench range scans / 
second

InnoDB 5.6.26 6403

old MyRocks 3090

new MyRocks 6093



• Binlog crash safety costs 5% to 20% of throughput with MyRocks 
• Not fixed yet: design discussion in progress

Problems: group commit



The problem 
• Uncommitted changes buffered in memory 
• Temporarily double-buffered on commit 

The solution 
• Commit early: rocksdb_commit_in_middle 
• Prevent large trx: rocksdb_max_locks (old), rocksdb_max_write_batch_size (new) 
• Tolerate large trx: design discussion in progress

Problems: large transactions & OOM



Evaluate performance with Linkbench

TPS iostat
r/t

iostat
wKB/t

CPU
usecs/t

Size  
(GB)

p99
update (ms)

MyRocks+zlib 28965 1.03 1.25 999 374 1

InnoDB 21474 1.16 19.70 914 14xx 6

InnoDB+zlib 20734 1.07 14.59 1199 880 6

Throughput, hardware efficiency and QoS



• InnoDB depends more on fast SSD 
• MyRocks spends less on writes to enable more reads & writes

The value of write efficiency

Insert benchmark Fast
SSD

Slow
SSD

InnoDB 5.7.10 268873 124782

InnoDB 5.6.26 111111 66251

MyRocks 102712 83766

Linkbench Fast 
SSD

Slow 
SSD Disk

InnoDB 5.6.26 21414 10143 414

MyRocks 28965 23484 2195



myrocks.io 
rocksdb.org 
mongorocks.org

Thank you
smalldatum.blogspot.com 
twitter.com/markcallaghan

http://rocksdb.org
http://mongorocks.org
http://smalldatum.blogspot.com
http://twitter.com/markcallaghan

